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Particle trapping: A key requisite of structure formation and stability
of Vlasov–Poisson plasmas
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Particle trapping is shown to control the existence of undamped coherent structures in Vlasov–Poisson

plasmas and thereby affects the onset of plasma instability beyond the realm of linear Landau theory.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916774]

I. INTRODUCTION

In a recent work of Mouhot and Villani1 (see also

Ref. 2), the basic conditions have been explored under which

Landau damping and its nonlinear analogon, the nonlinear

Landau damping, take place in a collisionless

Vlasov–Poisson plasma. In their perturbative analysis of

both systems, based in lowest order on linear wave theory, a

long-time mixing wipes out any structure such that the ho-

mogeneous unperturbed plasma state is approached time-

asymptotically. It is hence obvious that deviations from these

conditions are needed to allow structure formation. Whereas

linear and nonlinear Landau damping scenarios require suffi-

ciently quiescent plasmas and need analytic distribution

functions for their perturbative description, coherent struc-

tures preferentially occur in driven, noisy plasmas, such as

fusion plasmas, rely on a non-perturbative treatment, and

require for their description non-analytic singular distribu-

tion functions.

On the other hand, there is a long tradition in plasma

physics in its theoretical, experimental, and numerical treat-

ment, which has dealt with various properties of nonlinear

coherent structures as seen in a wealth of computer simula-

tions and lab and space observations, respectively.

In the present investigation, we make use of this vast

knowledge and deal with the opposite standpoint, namely,

the question under which conditions long living inhomoge-

neous coherent structures can be established in a plasma and

what the consequences for the plasma stability are. It can be

understood as a supplement to earlier studies of phase space

vortices or holes, such as Refs. 3–12, by exploring stronger

singularities than those needed for the privileged class of

cnoidal electron and ion holes, respectively.

The purpose of the paper is hence two-fold: (i) to enrich

the class of cnoidal electron holes (CEHs) by allowing stron-

ger singularities and (ii) to present a new view of the close

relationship between trapping and coherency from which a

new nonlinear route can be deduced of how a plasma can be

destabilized well below linear threshold. One outcome will

be that coherency and linearity exclude each other such that

linear Landau theory cannot be used to describe a coherent,

long-living wave pattern in phase space, no matter how small

the wave intensity will be.

The paper, in its first part, is an investigation of to what

extent the existence of undamped coherent structures is

affected by physically suggested singularities, allowing a

first glimpse on the function space needed for the description

of structure formation processes in general.

In the second part, a new scenario of plasma destabiliza-

tion is presented which becomes especially effective in the

linearly subcritical regime. Relying on these equilibria, their

non-perturbative description opposes the common picture of

onset of instability as predicted by linear Landau theory.

II. DISTRIBUTION FUNCTION AND DENSITY

In the following, the matter of concern are 1D, coher-

ent, stationary, electrostatic structures of weak amplitude of

the form /ðx� v0tÞ where /ðxÞ and v0 are the quantities to

be determined. The distribution function f ðx� v0t; vÞ is pre-

scribed and assumed to satisfy the Vlasov equation rather

than the linearized Vlasov equation. All other aspects, such

as the existence of trapped particles and the need to distin-

guish them from free particles, are then derived and estab-

lished ones and not the result of further assumptions or

approximations. There will be hence no way to omit this

intimate correlation between “coherency” and “trapping,”

the main issue of the paper. In other words, coherency and

stationarity in connection with the complete, untruncated

evolution equation are strong demands on the state of a

structurally excited plasma, strong enough to imply unam-

biguously trapping.13

Employing the pseudo-potential method,3,14 our goal are

hence stationary, 1D, electrostatic waves, which are travelling

typically with a nonzero speed v0 in a collisionless thermal

plasma. In comparison with Ref. 15 and earlier papers cited

therein, the present study is performed under generalized con-

ditions as the focus here is on singularities of the distribution

function of different kind, associated with trapping, and their

impact on the existence of such solutions. The plasma we are

dealing with consists of a simple two-component plasma with

for convenience fixed ions and collisionless, mobile electrons

which are subject to a resonant wave particle interaction.

More complex plasmas with mobile ions or finite currents, for

example, can be treated analogously, as shown previously in

the already cited papers.

The electron motion in phase space is then governed by

the Vlasov equation, which reads in the wave frame, i.e., ina)Email: hans.schamel@uni-bayreuth.de. URL: www.hans-schamel.de
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the frame moving with v0 with respect to the laboratory

frame,

½v@x þ U0ðxÞ@v�f ðx; vÞ ¼ 0: (1)

In (1), normalized quantities have been used, based on the

density n0 and the temperature Te of the unperturbed plasma.

An appropriate, i.e., mathematically and physically

meaningful, solution is given by the following Ansatz:3–5,16

f x; vð Þ ¼
1þ k2

0W
2ffiffiffiffiffiffi

2p
p

�
h �ð Þexp � 1

2
r
ffiffiffiffiffi
2�
p
þ v0

� �2
� �

þ h ��ð Þj exp � v2
0

2

� �
1þ c

ffiffiffiffiffiffi
��
p

� b�
� ��

: (2)

In (2), hðzÞ represents the Heavyside step function, r ¼ sgðvÞ
is the sign of the velocity, and � :¼ v2

2
� UðxÞ is the single

particle energy, U the electrostatic potential. The first part in

(2) represents the free (or untrapped), the second part the

trapped electrons, separated by the separatrix in phase space,

which is given by �¼ 0. The function f(x, v), which depends

on the two constants of motion, r and � (rather than on �
alone, as often found in the literature) is a solution of (1). In

the limits of j¼ 1, c¼ 0, and of small amplitudes, it coin-

cides with Schamel’s distribution (2) (Ref. 15) under which

the scenario of phase space hole and double layer solutions

has been developed,3–5,7 etc. It is hence an extension and

permits a still broader range of nonlinear wave analyses

being, as before, based primarily on physically stimulated

distributions.

Notice that this distribution function experiences a jump

across the separatrix when j 6¼ 1. In case of j¼ 0, trapped

particles are completely absent and there is a void at the

trapped particle region. The parameter j is hence a measure

for the strength of particle trapping involved during the for-

mation process. Notice further that the absence of trapped

particles (j¼ 0) does not mean an absence of the trapping

nonlinearity (TN) (see later).

To understand the specific form of (2), we note that the

distribution function is suggested by the replacement of v �
r
ffiffiffiffiffi
v2
p

through r
ffiffiffiffiffi
2�
p

and by the demand that it represents a

shifted Maxwellian in the unperturbed state. In case of a per-

turbation, this property is transformed to the point where the

trapped particles are absent, i.e., where U¼ 0. We have

thereby assumed without loss of generality that U satisfies

0 � UðxÞ � W, where W represents the amplitude of the per-

turbation. With this, we have correctly incorporated the

unperturbed plasma state given by W � 0, being represented

by the shifted Maxwellian: fMðvÞ ¼ 1ffiffiffiffi
2p
p exp½� 1

2
ðvþ v0Þ2�.

The propagating structures, we are looking for, are, there-

fore, embedded in an unperturbed thermal plasma. Other re-

alistic background distributions, as, e.g., superthermal

distributions,17,18 are feasible but are not followed further

here to keep the analysis as simple as possible.

In case of a continuous distribution (j¼ 1) and a regular

trapped particle distribution (c¼ 0), the parameter b in (2)

allows a fine tuning of the trapped particle state. It turns out,

as shown earlier, e.g., in Ref. 15 and the papers cited therein,

to be a necessary requisite for obtaining closed self-

consistent descriptions. A dip in the distribution function in

the trapped particle region in phase space, � < 0, is thereby

provided by b negative.

The distribution (2) for j¼ 1 and c¼ 0, is nevertheless,

singular at the separatrix, � ¼ v2

2
� UðxÞ ¼ 0þ, i.e., when one

approaches from the free particle side, but it is regular when

one comes from the trapped particle side. A singularity

occurs in the first derivative in v, which behaves like 1=
ffiffi
�
p

as � tends to 0þ, being hence a mild and integrable but

unavoidable singularity. Note that the singularity in

@vf ðx; vÞ, introduced by the free particle distribution, is char-

acteristic for propagating structures with v0 6¼ 0 only and

disappears for standing structures, where v0 ¼ 0. In (2), we

have incorporated singularities in the trapped particle region

not stronger than that introduced by the free particle region,

and refer to still stronger singularities, which have been dis-

cussed in the literature, at the end.

The stronger singularities, i.e., when j 6¼ 1 and c 6¼ 0,

are the focus of our attention in this letter.

To close the system, i.e., to find a self-consistent solu-

tion, we have to solve the second part, the Poisson equation,

which in the immobile ion limit becomes

U00ðxÞ ¼
ð

f ðx; vÞdv� 1 ¼: �V0ðUÞ: (3)

In the second step of (3), we have introduced the pseudo-

potential VðUÞ, because its knowledge allows by a quadra-

ture to obtain the final shape of the potential structure UðxÞ
via the pseudo-energy

1

2
U0 xð Þ2 þ V Uð Þ ¼ 0; (4)

where we without loss of generality have assumed Vð0Þ ¼ 0.

The electron density in (3), valid for small amplitudes

W� 1, can be obtained by a Taylor expansion of (2), fol-

lowed by the velocity integration, as was done in Refs. 4, 8,

and 10. It becomes

n Uð Þ ¼
�

1� 2ffiffiffi
p
p 1� jð Þe�v2

0
=2

ffiffiffiffi
U
p
þ k2

0W
2
þ AU

� 4

3
b v0; bjð ÞU3=2 þ :::

�
: (5)

where

A ¼ jc
ffiffiffi
p
p

2
e�v2

0
=2 � 1

2
Z0r v0=

ffiffiffi
2
p	 
� �

; (6)

b v0; bð Þ ¼ 1ffiffiffi
p
p 1� b� v2

0

� �
e�v2

0
=2: (7)

A remarkable property of (5) is that it represents a

Taylor expansion in powers of
ffiffiffiffi
U
p

, which is a consequence

of trapping and of the TN. The case of j¼ 1 and c¼ 0, when

the nonlinearity is represented by the U3=2 term, was the sub-

ject of our previous studies (see Ref. 15 and references cited
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therein), as mentioned. Here, we concentrate on the effect of

the stronger nonlinearity �
ffiffiffiffi
U
p

stemming from the disconti-

nuity of f(x, v) at the separatrix and on the singularity due to

a non-analytic trapped particle distribution, when c 6¼ 0.

Note that in (5), the higher order square nonlinearity �U2

has already been neglected. It would have been the ruling nonli-

nearity in an ordinary perturbation analysis that is free of trap-

ping effects. In this density expression, the term � 1
2

Z0rðv0=
ffiffiffi
2
p
Þ

can be interpreted as an electronic shielding term7 and is

defined by � 1
2

Z0rðv0=
ffiffiffi
2
p
Þ :¼ P

Ð
1
v @vfMðvÞdv, where P stands

for principal value, and ZrðxÞ represents the real part of the

complex plasma dispersion function for real arguments. A plot

of the function � 1
2

Z0rðxÞ, displayed in Fig. 1, shows that it has

a zero transition at x0 ¼ 0:924 ð
ffiffiffi
2
p

x0 ¼ 1:307Þ, a minimum of

�0.285 at xmin¼ 1.506 (
ffiffiffi
2
p

xmin ¼ 2:13), and is positive for

x < x0 and negative for x > x0 and vanishes at infinity. Since,

according to (6), it holds x ¼ v0=
ffiffiffi
2
p

, there hence exist two

separated regions for the phase velocity: a slow one with 0 �
v0s � 2:13 and a fast one with 2:13 � v0f .

III. NONLINEAR DISPERSION RELATION (NDR) AND
PSEUDO-POTENTIAL

A self-consistent solution of our problem is then

obtained by demanding

(i) VðUÞ < 0 in 0 < U < W and

(ii) VðWÞ ¼ 0,

the latter condition representing zero electric field at poten-

tial maximum. After substitution of (5) into (3) and a subse-

quent U-integration, we get for the pseudo-potential VðUÞ

�V Uð Þ ¼ � 4 1� jð Þ
3
ffiffiffi
p
p e�v2

0
=2U3=2 þ k2

0W
2

Uþ A

2
U2

� 8

15
b v0; bjð ÞU5=2 þ :::: (8)

Condition (ii) then becomes

8

3
ffiffiffiffiffiffiffi
pW
p 1� jð Þe�v2

0
=2 ¼ k2

0 þ A� 16

15
b v0; bjð Þ

ffiffiffiffi
W
p
þ :::: (9)

This is the NDR as it is the determining equation for the

phase velocity v0 in terms of the other parameters.

By substitution of A from (9) into (8) the pseudo-

potential can be rewritten as

�V Uð Þ ¼ � 4 1� jð Þ
3
ffiffiffiffiffiffiffi
pW
p e�v2

0
=2U3=2

ffiffiffiffi
W
p
�

ffiffiffiffi
U
p� �

þ k2
0

2
U W�Uð Þ

þ 8

15
b v0;bjð ÞU2

ffiffiffiffi
W
p
�

ffiffiffiffi
U
p� �

þ :::: (10)

It is interesting to note that VðUÞ, which is controlled by

j; k0, and b but not by c, is composed of three individual

constituents each of which representing substructures in

appropriate limits. It may serve as the building block in stud-

ies of phase-space turbulence in which an ensemble of ki-

netic structures replaces an ensemble of linear waves.19–22

The last term in (10) represents a sec h4ðxÞ solitary wave, the

second term a harmonic ð1þ cosðxÞÞ=2 wave, and the first

term a periodic cos4ðxÞ solution, when j > 1 (see later).

Note that c enters through A in the NDR (9) only.

From (9) and (10), it is easily seen that in the limits of

j¼ 1 and c¼ 0, when the distribution function is continuous

and the singularity is missing in the trapped particle distribu-

tion, we end up in (7) and (8) of Ref. 15. Our generalized

ansatz hence includes the nonlinear cnoidal electron hole

modes, described in Ref. 15 and the earlier papers cited

therein, as the smoothest version.

Since our focus in this letter is the impact of distribu-

tions with a stronger singularity, resulting from trapping, we

concentrate on cases where the last term in (9) and in (10)

can be neglected.

IV. VARIOUS WAVE SOLUTIONS

First we note that the parameter k0 accounts for periodic

wave solutions and that localized solitary wave solutions at

least require k0 ¼ 0. This is easily seen from (5) in the mini-

mum point U¼ 0, where it holds U00 ¼ k2
0
W

2
. A nonzero k0

hence gives rise to a positive curvature of U at its minimum

and hence to a periodic wave solution (We mention in paren-

thesis that the wavelet solution, uncovered in Ref. 15,

belongs to this latter category. It represents another type of

localized wave structure, being ubiquitously met in space

plasmas.). Note also that k0 ¼ 0 can still represent a periodic

solution, namely, when the structure is concentrated around

potential maximum with vanishing curvature at potential

minimum, such as for UðxÞ � cos4ðxÞ (see Appendix A).

A. Discontinuous distribution function

The simplest case, therefore, corresponds to a solitary

wave solution (k0 ¼ 0) and to a complete absence of trapped

electrons (j¼ 0), which of course does not imply the ab-

sence of TN. For this to happen, we should have solved the

NDRFIG. 1. The function � 1
2

Z
0
rðxÞ.
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8

3
ffiffiffiffiffiffiffi
pW
p e�v2

0
=2 ¼ � 1

2
Z0r v0=

ffiffiffi
2
p	 


; (11)

with

�V Uð Þ ¼ � 4

3
ffiffiffiffiffiffiffi
pW
p e�v2

0
=2U3=2

ffiffiffiffi
W
p
�

ffiffiffiffi
U
p� �

: (12)

This VðUÞ is, however, strictly positive in 0 < U < W
and hence disqualified as a possible pseudo-potential. A soli-

tary wave solution can, therefore, not exist without trapped

electrons.

Extending next the search to periodic wave solutions,

we have to solve

8

3
ffiffiffiffiffiffiffi
pW
p e�v2

0
=2 ¼ k2

0 �
1

2
Z0r v0=

ffiffiffi
2
p	 


> 0; (13)

with

�V Uð Þ ¼ � 4

3
ffiffiffiffiffiffiffi
pW
p e�v2

0
=2U3=2

ffiffiffiffi
W
p
�

ffiffiffiffi
U
p� �

þ k2
0

2
U W� Uð Þ:

(14)

The positive new term in (14) raises the chance of get-

ting a solution.

To see as to whether a solution is possible, we consider

VðUÞ at the right, most critical border. It holds for U! W�

�V Uð Þ ¼
ffiffiffiffi
W
p
�

ffiffiffiffi
U
p� �

W3=2 k2
0 þ

1

2
Z0r v0=

ffiffiffi
2
p	 
� ��

2;

where use has been made of (13). This expression as well as

both sides of (13) should be positive which can be satisfied

when k2
0 is sufficiently large, say, of order unity. The small-

ness of W in (13) is then guaranteed by sufficiently large

phase velocities.

We conclude that in the complete absence of particles in

the trapped range (a void in phase space), only periodic

structures with sufficiently high phase velocities and short

wavelengths are admitted. Solitary waves cannot exist under

zero trapping conditions.

This property can be transmitted to a partial filling of

the trapped range when j is nonzero but less than unity,

since in view of (9), (10) (and in the absence of the bðv0; bjÞ
terms) the same situation prevails. The possibility of an over-

population of trapped particles for k0 ¼ 0 is treated in the

Appendix, where it is shown that strictly speaking, only a

periodic structure can exist, not a pure solitary one.

Our conclusion, therefore, is that discontinuous distribu-

tions exclude solitary wave structures.

B. Trapped particle singularity

Coming now to a softer singularity at the separatrix by

demanding a continuous distribution function, j¼ 1, we see

from (10) that only a harmonic wave, represented by the sec-

ond term on the right hand side, does survive. So, the last

step is to learn how the phase velocity of this sinusoidal

wave is affected by a singular trapped particle distribution

with c 6¼ 0.

The NDR (9) becomes k2
0 þ A ¼ 0 with A given by (6)

and reads

k2
0 �

1

2
Z0r v0=

ffiffiffi
2
p	 


¼ B; (15)

with B ¼ � c
ffiffi
p
p

2
e�v2

0
=2. It is hence of the same form than the

NDR (7) of Ref. 15 with a different B. When B¼ 0, or c¼ 0,

respectively, it gives rise to a hook-like dispersion relation,

the well-known “thumb-curve,”4 with two branches, the fast

Langmuir branch and the slow electron acoustic branch. It is

purely nonlinear, resembles the van Kampen dispersion rela-

tion with k¼ 0 (Refs. 10 and 15) and is also called “on-

dispersion curve.” When B 6¼ 0, or c 6¼ 0, we get, depending

on its value, a multitude of dispersion curves, also called

“off-dispersion curves.” Fig. 2 shows both types of curves.

Note that for B> 0 and the fast branch, there is a cut-off

at lower k0 given by
ffiffiffi
B
p

< k0. The dashed line is the separat-

ing line between the fast and slow branches. For B< 0, no

solution exists for k0 <
ffiffiffiffiffi
�B
2

q
. The minimum possible B is

given by Bmin ¼ �0:19, which is located at
ffiffiffi
2
p

k0 ¼ 0:436.

For negative cs another restriction comes from the non-

negativity of the trapped particle distribution, which reads

1þ c
ffiffiffiffi
W
p

> 0.

Although the NDR here is identical with the one in Ref.

15, there is a big distinction in the shape of the associated

electric potential. Whereas the potential here is a single har-

monic for any B, it is multi-harmonic for B 6¼ 0 in the other

case, when B is related with bðv0; bÞ.
The smoother behavior of the distribution at the separa-

trix for the latter case, the cnoidal electron hole, has the

unambiguous consequence of a high harmonic content with a

multitude of phase-locked modes.10

This implies that a potential, the Fourier decomposition

of which showing a large spectrum of modes, must have

been created by a smoother electron distribution, for which

not only j¼ 0 but also c¼ 0. With a macroscopic measure-

ment of UðxÞ one can hence shed light on the microscopic

plasma state.

FIG. 2. NDR with x0 :¼ k0v0.
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Another question we like to address is where a typical

BGK mode fits in. This of course depends on how much of

information about UðxÞ can be invested. As the BGK

method23 is as general as the pseudo-potential method, a

complete knowledge of the spectral content and phase veloc-

ity of Uðx� v0tÞ of a cnoidal hole solution would result in a

trapped particle distribution, where only the b term in (2)

contributes. But, this a priori information is not available

without a preceding pseudo-potential analysis of the present

type (see also Ref. 15). A consequence is that one has to

cope within the BGK method with simpler ans€atze for Uðx�
v0tÞ at the cost of the regularity of fetðx� v0t; vÞ.

A typical example treated by several authors24–27 are

solitary potentials of Gaussian- or sec h�-type, � > 1, which

give rise to a
ffiffiffiffiffiffi
��
p

lnð��Þ singularity of the trapped particle

distribution, being hence even more singular than the ones

treated here.

As a rule, the simpler the potential is chosen in terms of

the harmonic spectrum, the more singular the distribution

will come out.

Since, however, singularities are non-physical, being

wiped out by additional processes such as phase space diffu-

sion, coarse graining, and discretization in numerics, it is

expected that the cnoidal hole solutions, exhibiting the

smoothest distributions, will be the ones coming closest to

the final description and are hence privileged.

Before we address the fundamental relationship between

Vlasov equilibria and Vlasov stability, let us summarize:

In the first part of the paper, we have concentrated on

trapped electron equilibria being associated with rather

strong singularities stemming from the trapped electron dis-

tribution function. They have to be added to the smoother

and well documented class of CEHs with the solitary elec-

tron hole5 as the most prevalent member. Ions have been

treated immobile, so far. The zoo of structures is, however,

much wider encompassing not only structures involving ion

trapping, namely, in cases where finite ion mass is taken into

account and where the phase velocity is close to ion thermal

velocity, but it includes also structures which at first glance

seem to exist without the need for a kinetic treatment and

trapping. An example is the ion acoustic soliton.28 In

Appendix B, we will show how trapping is coming in

through the back door such that this mode has to be incorpo-

rated in this zoo, as well. More generally, it would be of in-

terest to learn to what extent linear electrostatic structures in

a thermal, magnetized plasma, such as kinetic shear Alfv�en

wave structures,29 which in their dispersion relation exhibit a

Z0ðx=kÞ term, representing Landau resonance, face the same

problem as our present Vlasov–Poisson modes, as a result of

coherency, and should, as undamped modes, be handled in

the same way namely, nonlinearly by the inclusion of trap-

ping effects, as will be suggested also from Sec. V. Another

example may be the mutual interaction of drift waves and

zonal flows in drift wave turbulence,30 where the trapping

nonlinearity in connection with coherency and stationarity

can enter for the electrons as an extension to the Boltzmann

response in their parallel dynamics and for the ions by a

replacement of the linear ion Landau damping term through

the trapped ion nonlinear term. And also the trapping of fluid

elements in the E� B shear flow dynamics described by a

convective cell equation (or more sophisticated ones) for the

vorticity field provides a further example.11,15 Such issues

are delegated to forthcoming investigations.

V. SUBCRITICAL PLASMA DESTABILIZATION BY
HOLE EQUILIBRIA—THE FAILURE OF LANDAU
APPROACH

What does this extensive class of trapped particle equili-

bria (TPE) mean in the context of plasma theory? No more

and no less than that Landau theory gets a rival with respect

to the onset of plasma instability, as will be explained now.

First, each member of TPE is by definition lying on the

border in function space separating damped from growing

wave solutions, very much similar to a van Kampen mode,

which separates such solutions in the framework of linear

Vlasov theory. Indeed, Landau in his famous 1946 paper

(Ref. 31), in which he applied Fourier–Laplace technique to

derive time-asymptotically a dispersion relation, made use of

continuity at cL ¼ 0, where cL is the linear growth rate. He

established, by invoking continuity, a single expression for

cL, namely, cL ¼
px3

p

2k3n0
f 00

xrffiffi
2
p

kvth

	 

, valid for both, damped, and

growing solutions, and thereby defined the Landau contour.

His instruction, where cL ¼ 0 is related to a van Kampen

mode, is undoubtedly legitimate within the context of linear

Vlasov theory. It fails, however, when seen from the full

untruncated Vlasov equation. The reason is that a single

monochromatic and hence coherent van Kampen mode satis-

fies only the linear but not the full nonlinear Vlasov equa-

tion.10,15 (To be a solution of both, @vf1ðx; v; tÞ has to vanish

at resonant velocity, but it does not. Another shortcoming of

a van Kampen mode (and a Landau mode) is that f1 is

strongly singular due to the Cauchy principle value and the

delta function singularity, violating the necessary lineariza-

tion condition j@vf1j � j@vf0j in the resonant region and

hence introducing an inconsistency to the linearized treat-

ment of the Vlasov equation, see also Sec. III of Ref. 15.)

To be valid, Landau theory has to rest on an incoherent

superposition of many van Kampen modes with different k

and different phases, predominantly random phases, such as

in quasilinear theory. Only when a single harmonic mode is

embedded in a broad-band spectrum of incoherent waves,

then coherency (and hence trapping) can be suppressed.

Phase mixing rather than phase locking then rules the evolu-

tion, and the difference between linear and full Vlasov equa-

tion becomes negligible. In Landau theory, the avoidance of

coherency and trapping is hence a key issue.

As shown in Refs. 10 and 15, a superposition of phase

locked van Kampen modes all propagating with the same

phase velocity v0 and being composed of the same spectrum

as the corresponding hole mode, satisfying hence the same

macroscopic conditions as the hole, is formally possible, but

it is not a solution of the full Vlasov equation and must be

discarded.

A continuous transition between damped and growing

coherent solutions demands a nonlinear equilibrium at transi-

tion, valid for the full Vlasov equation and bringing in the
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class of TPE and being characterized by a vanishing nonlin-

ear growth rate cNL.

As an example, in case of immobile ions and kinetic

electrons, the van Kampen mode has to be replaced by a

CEH, see Refs. 10 and 15, to validate the continuous transi-

tion for the full Vlasov equation. The key point thereby is

that a CEH remains distinct from a van Kampen mode for

any amplitude, including the infinitesimal amplitude limit.

The macroscopic identity of both solutions does not imply

their microscopic identity. This is why linear wave theories

as a whole inclusively Landau theory fail in predicting the

onset of instability in case of a coherent wave pattern. The

common assumption that linear wave theory has its legiti-

macy for sufficiently small amplitudes can simply not be

made.

To substantiate these statements, let us consider a cur-

rent driven plasma with a drift vD between electrons and

(mobile) ions. Linear wave theory then yields a critical line

v	DðhÞ in the ðh ¼ Te

Ti
; vDÞ parameter space describing the

onset of instability. As seen from Figs. 2–4 of Ref. 37 and

from Figs. 4–7 of Ref. 38 there exists below this line, i.e., for

smaller vD at given h, a variety of hole solutions (solitary

electron holes as well as solitary ion holes, harmonic waves,

etc.) each of which being a potential candidate for destabili-

zation, e.g., by a vD somewhat larger than its own value.

Since, however, the location of these hole structures depends

also on quantities such as wave amplitude (w), electron (b),

and ion (a) trapping parameters there is a whole band below

v	DðhÞ from which a plasma destabilization can start and take

its origin. Hence, a whole band below critical drift velocity,

vD < v	D, can be a potential source of nonlinear instability,

provided that it is triggered by an initial fluctuation in terms

of a suitable seed-like depression in phase space or a non-

topological fluctuation at resonant velocity (the latter being

defined by its different slope against that of f0ðvÞ). The whole

scenario gets further support by the fact that these holes are

zero- or negative-energy holes11,37,38 and are hence most

easily excited. Special attention should thereby be paid to

solitary ion holes, as for each h an ion trapping parameter

can be found for which virtually no minimum threshold vD is

needed for their existence, see Fig. 4 of Ref. 37. We finish

by noting that there are meanwhile plenty of numerical simu-

lations and analytical hints, which approve structure forma-

tion by nonlinear growth in subcritical two-stream plasma

situations.11,15,32–38

VI. SUMMARY AND CONCLUSIONS

The subject of the present article have been undamped,

1D, weak, electrostatic structures, which typically propagate

at bulk velocity in a thermal, collisionless plasma, i.e., in a

region, where standard linear wave theory predicts non-

existence due to strong Landau damping. The omnipresence

of these structures in laboratory, space, and numerical

experiments, however, indicates that something must be

wrong with wave theories that rely on a linearization of the

governing equations in the small amplitude limit and on a

perturbative nonlinear analysis based on linear wave theory.

In the present paper, we have been shown by explicite

construction and evaluation of coherent Vlasov–Poisson

plasma equilibria how undamped structures in phase (and

real) space can be brought to life by utilizing particle trap-

ping. In this sense, coherency and linear wave theory do not

go together. Particle trapping and the associated TN, respon-

sible for non-analytic particle distribution functions, have

been proved to be the driving force in the structure formation

processes. Several singular physically impelled distributions

have been considered, and corresponding conclusions have

been drawn, e.g., the non-existence of solitary wave struc-

tures in cases of discontinuous distribution functions at the

separatrix, including a void in the trapped region. As a rule,

the simpler the wave structure is in its harmonic spectrum

the stronger is the associated singularity. The known cnoidal

electron (and ion) hole solutions are hence privileged as the

ones coming closest to real physics providing the smoothest,

albeit still non-analytic distribution functions, whereas BGK

solutions typically exhibit a stronger singularity and are for

this reason less relevant. It is worth mentioning that the anal-

ysis presented was straightforward and did not need any

detour, such as a Fourier transformation and associated cut-

offs, or restrictions, such as periodic boundary conditions,

which may spoil the existence of solitary wave structures.

The arguments presented in this article hence ask for

an additional path in wave theory supplementing Landau

theory in which nonlinearity, stemming from trapping

rather than from a hydrodynamic quadratic procedure (such

as mode-coupling), prevails no matter how small the ampli-

tude is. Trapping appears as an indispensable ingredient of

proper descriptions of coherent structures and associated

collisionless plasma dynamics which can be treated non-

perturbatively only.

It is the velocity region at phase velocity—the resonant

or trapped particle region—for which special care must be

taken not to miss coherent structures. It is, in this respect,

irrelevant how they have been generated, i.e., on which way

from an initial seed the structure formation process has taken

place in course of time, their long-time existence does allow

such conclusions.

We finish with six remarks. First, the structures

observed in a recent microinstability simulation,39 in which

the ruling role of the trapping nonlinearity was exposed,

clearly give support to the present scenario. In it, the growth

and saturation of a coherent electron hole could be seen

propagating at ion acoustic velocity and being located at the

rising wing of the drifting electron species in the current-

driven plasma with vD > v	D. A solitary ion acoustic wave

and a solitary electron hole are in this regime one and the

same object, namely, when electron trapping is less pro-

nounced in comparison with the Boltzmannian state such

that the dynamics is governed by the trapping nonlinearity.

Second, the different opinions about the origin of structure

formation, expressed recently in a dispute,40,41 are resolved

in favor of trapping, if there had been the need for yet

another proof. Third, besides the observations in space, the

most sensitive experimental measurements of collisionless

phase space structures have probably been made in coasting

and bunched beam experiments in storage rings such as in
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Brookhaven, Fermilab, or Cern,42,43 where long-living

coherent structures could be detected, e.g., during rf-activity,

circulating many times around the ring.11,44 Fourth, quasi-

stationary structures of this kind have been found in simula-

tions of DC-driven weakly collisional plasmas with plateau-

like trapped particle distributions as well, provided that ion

mobility was taken into account.9,11,35,45,46 They are hence

representative of new dissipative out-of-equilibrium states of

driven plasmas far away from thermodynamic equilibrium.

Fifth, we point out that the nonlinear Landau damping sce-

nario, mentioned in the Introduction, experiences a different

fate when a non-perturbative structure formation process is

admitted by the procedure as seen by the long term genera-

tion of tiny phase space vortices in the numerical simulations

of Refs. 47, 11, and 35. Sixth, coarse-grained distribution

functions in which singularities do no longer appear may be

obtained by averaging over small cells in l-space. Another

approach may be achieved by invoking statistical mechanics

principles such as Lynden-Bell’s maximum entropy princi-

ple.48 A successful test of the latter against a discrete simula-

tion has been reported recently in Ref. 49 for the beam-

plasma instability and the observed quasi-stationary-out-of-

equilibrium states.

In conclusion, it is expected that the trapping scenario

we have explored in some detail in the present paper by a

non-perturbative analysis for electrostatic waves may give a

clue for a deeper understanding of structural plasma turbu-

lence in general and may thus contribute to the resolution of

a long-standing mystery about their dynamical evolution.

APPENDIX A: DISCONTINUITY WITH
OVERPOPULATED TRAPPED ELECTRONS

In Appendix A, we treat a discontinuous distribution

with a surplus of trapped electrons at the separatrix ðj > 1Þ
and get from (8), (9) with (6) for k2

0 ¼ 0 and bðv0; bjÞ ¼ 0

�VðUÞ ¼ SU3=2ð
ffiffiffiffi
W
p
�

ffiffiffiffi
U
p
Þ (A1)

and

jc
ffiffiffi
p
p

2
e�v2

0
=2 � 1

2
Z0r v0=

ffiffiffi
2
p	 


¼ �2S; (A2)

with

S :¼ 4 j� 1ð Þ
3
ffiffiffiffiffiffiffi
pW
p e�v2

0
=2 > 0: (A3)

Ignoring the higher singularity in the trapped electron

distribution, which has an influence only on v0 but not on the

shape, we set c¼ 0 and get for the NDR

� 1

2
Z0r v0=

ffiffiffi
2
p	 


¼ �2S < 0: (A4)

From Fig. 1, we immediately see that only phase veloc-

ities above 1.307 are admitted and that it must hold �2S >
�0:285 or 0 < S < 0:143. A S in this interval yields two

branches, a slow one with 1:307 < v0s < 2:13 and a fast one

with 2:13 < v0f <1. Having obtained v0 from the NDR, we

can use the definition of S in (A3) to relate j with W, noting

that W� 1. We therefore get a j close to unity. Only a small

overpopulation is possible for a discontinuous distribution

function and it holds j! 1 when W! 0.

To get the shape, we have to solve the integral

ðW

U

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/3=2

ffiffiffiffi
W
p
�

ffiffiffiffi
/
p� �q ¼

ffiffiffiffiffi
2S
p

x; (A5)

which follows from (4) with VðUÞ given by (A1). This inte-

gral can be solved by the substitution of u ¼
ffiffiffiffiffiffiffiffiffiffi
/=W

p
and a

subsequent u-integration to yield

U xð Þ ¼ W cos4

ffiffiffi
S
p

2
ffiffiffi
2
p x

 !
; (A6)

which is a periodic structure exhibiting narrow humps local-

ized at the potential maxima. Although we assumed k2
0 ¼ 0,

we did not get a pure solitary wave. Since, however, the trap-

ping conditions can vary from one period to the next period,

we can think of constructing a wavelet solution with a cen-

tral peak and diminishing neighboring peaks (see also S12),

all humps propagating with the same v0. In the limit of only

one hump, we then arrive at a solitary-like structure with a fi-

nite extension in x (solitary kind of wave having a “compact

support”).

We conclude that discontinuous distributions are in con-

flict with pure solitary waves and only admit periodic or

wavelet structures.

APPENDIX B: ION ACOUSTIC SOLITON AS TRAPPED
PARTICLE STRUCTURE

In Appendix B, it is shown that an ion acoustic soliton,

satisfying a KdV equation, belongs to the class of trapped

particle structures as well.

Its dynamics can first of all be formulated by using a

cold ion fluid model since its phase velocity, the ion sound

speed, by far exceeds the ion thermal velocity in case of hot

electrons, the usual requirement for the existence of these

structures. Trapping is instead found in the electron species

the density of which being given by a Boltzmann relation in

the isothermal limit. It becomes for small amplitudes

ne ¼ 1þ /þ /2=2þ :::: (B1)

An extended expression, as derived in Refs. 3 and 28, allow-

ing a generalization of the electronic trapping state, becomes

(see Eq. (46) of Ref. 3 or Eq. (5) of Ref. 28)

ne ¼ 1þ /� 4 1� bð Þ
3
ffiffiffi
p
p /3=2 þ /2=2þ :::; (B2)

which for isothermal electrons, b¼ 1, coincides with (B1).

Note that the first three terms in (B2) are obtained from (5)

for j ¼ 1; k0 ¼ 0; v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p

 0. Nonlinearity is intro-

duced by the last term in both equations through the ordinary
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quadratic nonlinearity, whereas in (B2), an additional nonli-

nearity appears, the so-called TN, which is of Oð/3=2Þ and

dominates the evolution unless b is close to unity.

For b¼ 1, the well known KdV-equation can then be

derived, e.g., by means of a reductive perturbation method.

For b ’ 0, on the other hand, corresponding to a flat-topped

electron distribution function, the corresponding evolution

equation is of Schamel form (Ref. 28) given by

@t/þ
1� bð Þffiffiffi

p
p

ffiffiffiffi
/

p
@x/þ

1

2
@3

x / ¼ 0; (B3)

(see (14) of Ref. 28).

If ð1� bÞ ¼ Oð
ffiffiffiffi
w

p
Þ, then both nonlinearities are of the

same order and have to be treated on equal footing, yielding

a nonintegrable SKdV equation (Refs. 3 and 28)

@t/þ
1� bð Þffiffiffi

p
p

ffiffiffiffi
/

p
þ /

� �
@x/þ

1

2
@3

x / ¼ 0: (B4)

A solitary wave structure of (B4) is found in (48) of Ref. 3,

turning into a sech2-soliton in case of b¼ 1 and to a sech4-

solitary wave in case of ð1� bÞ ¼ Oð1Þ. The ordinary ion

acoustic soliton is hence a special case of a generalized soli-

tary wave structure, the latter being distinguished by differ-

ent trapped particle states. They are a generalization of the

“maximum” trapped electron state, a state which is filled up

“optimally” up to the isothermal Maxwellian state. We note

in parenthesis that the finite amplitude expression corre-

sponding to (B2) can be found in (2) of Ref. 28, turning into

a Boltzmann expression for b! 1. For further information,

see also Ref. 10, especially Sec. IV A.

And last but not least, if it holds ð1� bÞ ¼ Oðw�1=2Þ,
corresponding to a still deeper excavation of the electron dis-

tribution, then both the linear and the nonlinear term are of

equal size and contribute at the same level. Linear wave

theory has lost its dominance. It is easily seen (see Sec. 4 of

Ref. 3) that the corresponding solitary wave solution reads

/ xð Þ ¼ w sech4 x

D

� �
and v0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16=D2

q ;

where D :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15
ffiffiffi
p
p

1� bð Þ
ffiffiffiffi
w

p
s

> 4:

Although w� 1, the TN term successfully competes with

the linear term giving rise to a nonlinear wave solution,

which has a small width of O(1) independent of w and a

larger phase speed, which has nothing to do anymore with

the linear sound speed v0 ¼ 1. An example: D¼ 5 yields

v0 ¼ 5=3. A width of O(1) of course undermines the applic-

ability of a reductive perturbation method, which needs a

lead of linearity and a stretched spatial extension.

So, already in the ion acoustic wave case, one can recog-

nize the limitation and breakdown of standard wave theory

and see how different trapping scenarios affect the wave sol-

utions introducing a new wave model which has nothing in

common anymore with the standard linearly rooted wave

concept. Notice further that such a failure cannot be cured by

letting the perturbation amplitude go to infinitesimal values

as falsely believed in the common wave literature. Hence, all

wave theories, which are based in their implementation on a

Boltzmannian electron response in 1D, i.e., in which implic-

itly use is made of the existence of such an inherent

“maximum” trapped electron state, can experience such a

transformation (shift) away from standard wave approach by

adopting different trapping states. Physically, as seen later,

this appears to be especially important with respect to the

ion species.

Finally, we mention the close relationship between non-

linear ion acoustic waves and electron holes referring to the

first remark in Sec. VI and stress the symbiotic, contrarotat-

ing relationship between the microscopic trapped particle

population (TPP) and the macroscopic TPN. A zero TPP

implies a maximum TPN and a “maximum” TPP a zero

TPN, the latter representing the door to the common wave

approaches.
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