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Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the Lagrangian

fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with

boundary conditions as in Harris’ current sheet. The solution shows competition among hydrodynamic

convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic

field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the

magnetic field. A possible application is in the early stage of magnetic star formation.
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Singularities in hydrodynamics and other collective sys-
tems, described by continuum equations, such as plasmas
in the fluid approximation, have acquired considerable
attention recently due to the special role they play in the
characterization and understanding of the underlying
physical processes. As a rule, singularities appear in finite
time, are purely nonlinear, i.e., they cannot be understood
or predicted by a linearization of the governing equations,
and are crucial events in the underlying physics describing
changes in topology, i.e., are seeds for new structures
requesting new physics.

A typical example in hydrodynamics is the drop forma-
tion and breakup of jets, where the neck undergoes zero
shrinking at finite time [1]. Near the singular event a
stochastic element in the governing Navier-Stokes equa-
tion has to be included to account for the droplet formation
in agreement with the observations, as seen, e.g., in mo-
lecular dynamic simulations [2,3].

In plasma physics a comparable example is the plasma
expansion into vacuum [4–6], which operates on the ionic
time scale, such that electrons reside in an equilibrium
state. During the evolution, described by ion fluid equa-
tions, the ion density experiences a collapse in finite time,
which has been identified as an ion wave breaking scenario
[6,7]. Beyond that, depending on the degree of collision-
ality, either kinetic or dissipative effects supervene, giving
rise to the fast ion peak propagating supersonically into the
vacuum [8–11], an experimentally well-established fact in
laser-matter interactions [12].

In this Letter, we present another time-dependent,
strongly nonlinear, collapsing solution, namely, one be-
longing to the realm of compressible MHD plasmas. The
dynamical structure is spatially a localized current sheet,
describing the reversal of the magnetic field across the
sheet similar to a Harris sheet [13]. In contrast to the latter,
however, the evolution is transient as both the magnetic

field and the density are strongly time dependent, becom-
ing singular in finite time simultaneously as long as dis-
persion is negligible. Dispersive effects are shown to
prevent density from collapsing but not so for the magnetic
field. It is argued that matter clumping in the Universe prior
to star formation involving strong and ultrastrong magnetic
fields may be seeded by such a process.
Our system of equations utilizes the geometry of com-

pressional waves; i.e., the x and t dependent magnetic field
is in the z direction, the electric field and current in the
y direction, and the propagation and inhomogeneity of the
structure in the x direction.
A shorthand approach to solving our system of equations

is the use of resistive MHD equations supplemented by a
generalized Ohm’s law in which the ðj=nÞ� (where the dot
implies the total time derivative) term is kept and in which
an explicit use of the 1=n dependency of the resistivity is
made. The magnetic field is assumed to be large such that
the electron pressure contribution is negligible. Here we
prefer a somewhat longer justification, as follows.
We consider a one-dimensional, cold, two-component,

quasineutral (ne � ni � n) plasma; the ions are taken to
be singly ionized without loss of generality. In the fluid
approximation the basic equations describing the disper-
sive compressional wave in a magnetized plasma can be
written as

EQ-TARGET;temp:intralink-;d2;316;201

@n

@t
þ @

@x
ðnvÞ ¼ 0; (1)

EQ-TARGET;temp:intralink-;d3;316;172

@v

@t
þ v

@v

@x
¼ � 1

2n

@B2

@x
; (2)

EQ-TARGET;temp:intralink-;d3;316;140

@B

@t
þ @

@x
ðBvÞ ¼ �

@

@x

�
@

@t
þ v

@

@x

��
1

n

@B

@x

�

þ �
@

@x

�
1

n

@B

@x

�
: (3)

PRL 106, 145003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
8 APRIL 2011

0031-9007=11=106(14)=145003(4) 145003-1 � 2011 American Physical Society



The first two equations are the continuity and momentum
equation for ions. To write Eq. (2), it is assumed that the
magnetic pressure force is much greater than the thermal
pressure force. Equation (3) is a combination of the elec-
tron momentum equation with Maxwell’s equations. The
term � is the dispersion term, arising due to finite electron
mass and � is the resistivity, arising due to electron-ion
collisions. These equations are all in terms of dimension-
less variables such that density is normalized by a constant
value n0 and the magnetic field is normalized byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n0ðme þmiÞv2

A

q
, where vA is the Alfvén speed.

The length scale is the arbitrary length L, and the
time scale is the Alfvénic transit time vA=L. The parame-

ters � and � are given by � ¼ ð�=LÞ2, where � ¼
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
memi=4�n0e

2ðme þmiÞ
p

and � ¼ �ðme þmi=miÞ�
ð�eiL=vAÞ.

Now we proceed to find an exact solution of Eqs. (1)–(3)
using Lagrangian variables. In solving these equations we
transform from Eulerian variables (x; t) to Lagrangian
variables (�; �) (such that � ¼ x at t ¼ 0) where � � t
and � � x� R

�
0 d�

0vð�; �0Þ, so that � is a function of

both x and t, but � and � are treated as independent
variables. In terms of these new variables the convective
derivative @=@tþ v@=@x becomes @=@� and following
previous work [14–20], we find from Eq. (1)
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where nð�; 0Þ represents the initial (� ¼ 0) density distri-
bution in space and the corresponding fluid equations are
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To derive Eqs. (5) and (6) we have combined Eqs. (1), (2)
and (1), (3) after converting them to Lagrangian variables.
These equations tell us that in the absence of dispersions
(� ¼ 0) and dissipation (� ¼ 0) the magnetic field is fro-
zen in the plasma and that a finite value of either of these
parameter breaks that symmetry. We shall now present the
solutions, which we obtained by the method of separation
of variables. Proposing the solutions of the form nð�; �Þ ¼
Nð�Þ�ð�Þ, Bð�; �Þ ¼ bð�Þc ð�Þ, one can substitute in
Eqs. (5) and (6) and separate space and time variable
equations are as follows:
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where nð�; 0Þ ¼ Nð�Þ�ð0Þ, Bð�; 0Þ ¼ bð�Þc ð0Þ with
c ð0Þ, �ð0Þ � 0 and 	, 
 being arbitrary separation con-
stants. Here the overdot on c in Eq. (8) implies derivative
with respect to time �. Solving separately for spatial and
temporal equations one can obtain a complete solution
[21]. Note here that in the temporal solution an auxiliary
variable � is introduced in place of time such that
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where fð�Þ plays the role of an integrating factor.
The parameter 	 stands for the strength of the magnetic

field and controls the time scale [21]. If it is, without loss of
generality, chosen to be 2 and if the initial density is
normalized to unity, yielding 
 ¼ �=2, we get for density
and magnetic field
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Moreover, the mean velocity vð�; �Þ, which can be ob-
tained by a � integration of the continuity equation [21],

is found to be vð�; �Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
�

p
�½~�� tan~��. Once

the solution for the density is known one can easily find

out, by utilizing (4), the relation between � and x: x ¼
�½
�þ ð1� 
�Þcos2 ~� expð2~� ~�Þ�, which is linear in
space but strongly time dependent.
The relation between � and � is given by
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Equations (9)–(11) represent the complete solution, which
depends on the two independent, external parameters � and
�. At � ¼ 0 (� ¼ 0, respectively) it resembles the Harris
sheetlike solution, B� tanh� , n� sech4� , seen by setting
�� sinh� , but, in contrast to it, evolves now strongly
time dependent even in a cold plasma environment.
To see its consequences, we first analyze the dispersion-

less, ideal limit by setting � ¼ 0 ¼ �, and get
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Starting from a Harris-type initial state there is an inward
drift of the fluid, blowing up the density and magnetic field
and shrinking the inhomogeneity width. At �c ¼ �=2 ¼
1:571 (tc ¼ �c ¼ �=4 ¼ 0:785, respectively) the system
collapses giving rise to a singularity in n, B and v at the
collapse point xc ¼ 0.

Compressibility, nonlinearity, and a Lorentz-force
driven convection result in an unbounded amplification in
finite time, as long as dispersion and dissipation are absent.

For nonvanishing dispersion and resistivity, the full set

(9)–(11) applies, in which ~� ~� is given by 
��=ð1� 
�Þ.
As long as 
� < 1 the denominator of the density in (9),
however, can no longer become zero even in the zero
resistivity limit. The action of the dispersion alone prevents
the density from collapsing, whereas the magnetic field

still experiences collapse, namely, at �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 
�Þp

�=2,
i.e., earlier in the auxiliary time variable. There is still a
collapsing inward drift, as seen from the vð�; �Þ expres-
sion, but finite resistivity delays the drift motion by adding

an outward drift component. At collapse, when cos2 ~� ¼ 0,
the spatial width in x remains finite in accordance with the
limitation of the density.

Figure 1 displays the space-time behavior of the mag-
netic field B for finite values of the dispersion, � ¼ 0:1, and
the resistivity, � ¼ 0:03. The collapse is clearly seen by

the blowing up of B in time just before tc ¼ 0:757, mea-
sured in terms of Alfvén transit time L=vA.
This is in contrast to the density behavior, plotted in

Fig. 2 for the same set of parameters. Close to the magnetic
field collapse event the density becomes stronger peaked
and narrower, but remains finite.
The relationship between � and � is plotted in Fig. 3 for

three cases: (i) � ¼ 0 ¼ � (solid line); (ii) � ¼ 0:1, � ¼ 0
(dotted line); and (iii) � ¼ 0:1, � ¼ 0:03 (dash-dotted
line). We recognize that dispersion and resistivity act
oppositely. Whereas dispersion speeds up the collapse
process, resistivity delays it.
This is also seen from the relationship between �c

and the actual time �c ¼ tc at magnetic field collapse

(~�c ¼ �=2) in the small resistivity limit ~� � 1:
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Notice that in the dissipationless case, � ¼ 0, the collapse

time can also be obtained through �0ð~�cÞ ¼ 0.
We conclude that the initial configuration of a Harris-

type current sheet collapses together with the associated
magnetic field, when subject to the fully nonlinear,
time-dependent, generalized MHD equations, represented
by (1)–(3). The density collapses as well unless dispersive
effects enter the system. Resistivity has been found not to
be able to halt the density collapse; rather, it merely has a
delaying effect on the process.
The solution of this problem was made possible by the

introduction of the auxiliary time variable � instead of �
through which the complex time dependency could be
transformed and simplified.
For arbitrary initial magnetic field strength
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the collapse time is modified becoming �c ¼
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; i.e., it is prolonged if the field is weaker,

as expected.
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FIG. 1. Normalized magnetic field evolution with finite dis-
persion � ¼ 0:1 and dissipation � ¼ 0:03. The figure shows that
neither finite dispersion nor resistivity can stop the magnetic
field singularity. The latter has merely a delaying effect on the
collapse time, which occurs at tc ¼ 0:757, the time measured in
Alfvén transit time.
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FIG. 2. Normalized density evolution with finite dispersion
� ¼ 0:1 and resistivity � ¼ 0:03. The figure shows that the
density singularity is removed due to finite dispersion.
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As mentioned in the introduction, a singular behavior
indicates the appearance of new physics. Candidates in the
present case are effects arising from (electron) pressure and
viscosity, but also relativistic or gyrokinetic (and even
kinetic) effects can enter. Moreover, the one-dimensional
(1D) structure will probably be unstable against transversal
perturbations such that 3D localized patterns of high den-
sity and strong magnetic field are expected to arise. It
would, therefore, be no surprise if this compressional-
type collapse process driven initially by a localized current
sheet turns out to be the seed for star formation prior to the
onset of gravitation and turbulence especially when strong
magnetic fields are involved.

Indeed, the observed preservation of magnetic field
orientation in the star formation [22] during the accumu-
lation of a low-density, large scale intercloud medium to a
high-density, small scale cloud core indicates that field
tangling due to turbulent eddies cannot be severe at least
for strong fields (sub-Alfvénic turbulence) such that the
magnetic field itself must be dynamically significant in
comparison to the mass accumulation agents, i.e., gravity
and turbulence. Our model provides a clue for the under-
standing of such a star formation process, which is domi-
nated by magnetic fields.

In conclusion, we emphasize that our analysis of a
compressional MHD kind collapse has been oriented to-
wards a simple macroscopic situation in which nonlinear-
ity, time dependence, dispersion, and resistive dissipation
are treated on equal footing, resulting in an exact solution
of the governing equations. We could show that the col-
lapse driven by a localized Harris-type current sheet con-
figuration affects both density and magnetic field in an
ideal, dispersionless plasma situation. Whereas resistivity
cannot stop collapse and merely delays its appearance,
dispersion is able to stop the density from collapsing.

This type of solution represents a new class of nonlinear
transient solutions that may arise in a manifold of similar

physical situations. Exact nonlinear, time-dependent solu-
tions involving dispersive and dissipative effects are rare in
the literature and can probably be achieved through the
Lagrangian fluid description only. Another physical sys-
tem, which could be attacked solely by this procedure, is
the beam transport in plasma diodes under the influence of
collisions. The latter modifies the space-charge-limited
current, building a bridge between the ballistic Child-
Langmuir law and the nonballistic drift Mott-Gurney law
[23]. We believe that more investigations in this direction
will enrich our understanding of such intricate physical
processes such as star formation.
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FIG. 3. Variation of the actual time � with respect to the
timelike variable � for three cases: (i) � ¼ 0 ¼ �; tc ¼ 0:785
(solid line); (ii) � ¼ 0:1, � ¼ 0; tc ¼ 0:721 (dotted line); and
(iii) � ¼ 0:1, � ¼ 0:03; tc ¼ 0:757 (dash-dotted line).
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