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In this review a plaidoyer is held for a specific form of nonlinearity, the trapping nonlinearity (TN),

which arises due to a capture of particles and/or fluid elements in an excited coherent structure.

This is of some importance since it appears that TN has not yet taken roots hitherto, neither in

turbulence nor in anomalous transport models. The present state of knowledge about wave

excitation, seen numerically and experimentally, especially at space craft, however, speaks a

different language suggesting that current wave models are constructed too narrowly to reflect

reality. The focus is on traveling cnoidal electron holes (CEHs) in electrostatically driven plasmas

and the physical world associated with these. As a result a new wave concept emerges, in which

the low amplitude dynamics is nonlinearly controlled by TN. VC 2012 American Institute of Physics.

[doi:10.1063/1.3682047]

The kinetic theory of periodic electron hole equilibria or

phase space vortices is thereby reexamined in the small am-

plitude limit. Use is made of the pseudo-potential method

extended into the kinetic regime. A set of two macroscopic

equations, the nonlinear dispersion relation (NDR), in charge

of the wave velocity, and the pseudo-potential, responsible

for the spatial structure, is derived and analyzed. The

obtained modes are of cnoidal type, i.e., are described by

Jacobian elliptic functions, and encompass solitary as well as

periodic wave equilibria of essentially rarefaction type.

These structures, which are moving with electron thermal

velocity and slower, are reminiscent of the van Kampen

wave continuum, but are intrinsically nonlinear even in the

infinitesimal amplitude limit. Only very exceptionally, a

wavepacket composed of the latter modes can come close

to the present structures, but still suffers damping and is

ill-behaved in phase space. It is the microscopic particle

distribution function (DF) at resonant velocity which marks

the difference. On the other hand, linear packets exhibit fila-

mentary and more or less singular distributions in this region,

and the present structures are distinguished by sufficiently

smooth and regular trapped particle distributions, being

typically depressed and hence hole-like.

In plasma physics, the following innovations are

presented:

(1) The intrinsic nature of TN, as a plasma property inde-

pendent of the strength of wave amplitude, is proved via

several approaches.

(2) Although identical in shape and speed, the van Kampen

modes (and all other linear superpositions supposed to

describe equilibria) are excluded from the class of solu-

tions of the Vlasov-Poisson (VP) system, the true modes

being nonlinear and controlled by TN. This holds up to

the infinitesimal amplitude limit. In other words, it

appears rather doubtful to confront reality with solutions

of a kinetic equation, which turns out to be invalid

because of truncation.

(3) In the spectrum of nonlinear waves there are three local-

ized solutions, two referring to rarefactive waves, the

solitary electron hole (SEH), and the cnoidal electron

hole wavelet (CEHWL); the other one is solitary too, but

refers to a compressional solution (solitary potential dip,

SPD). The former two have been identified in space

experiments as bipolar, tripolar, or multipolar spikes of

Ek, respectively, the latter one possibly in a lab

experiment.

(4) A linear instability for the generation of these modes is

not needed. They can be found in linearly stable regimes

as well, as a result of a nonlinear instability, e.g., in a

current-carrying, noisy plasma, being guided by the

zero-energy concept. Space observations bear witness of

this.

(5) Rayleigh’s group velocity concept ceases to be valid and

applicable in the presence of trapping due to the lack of

a linear carrier mode, the correct speed, e.g., of a

CEHWL, being given by the NDR. Moreover, several

generalizations and theoretical extensions are presented

in this review.

This altogether challenges electrostatic turbulence

and anomalous transport models by questioning their

linear basis due to trapping. The omnipresent and intrinsic

feature of trapping at all levels of wave intensity holds

true for any collisionless or weakly collisional, fluid-like

plasma driven electrostatically by currents, beams, or

inhomogeneities.

In fluid dynamics, the mathematical analogy between

the VP system and the 2D, incompressible shear flow equa-

tions suggests a transfer of these trapping ideas to excited

flows as well. Secondary equilibria involving localized

patches of vorticity, in which fluid elements are trapped,

pave the way for a better theoretical understanding the onset
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of turbulence, as exemplarily indicated for the plane Couette

flow problem.

In summary, the underlying TN is expected to play a

central, universal role in the general setting of plasma and

fluid turbulence beyond that of one-dimensional, electrostati-

cally driven plasmas.

I. INTRODUCTION

Phase space holes, well-known for a couple of decades,

are long living electrostatic structures in driven, collisionless

plasmas far away from thermodynamic equilibrium, exhibit-

ing typically a dip in the phase space distribution function at

resonant velocity. Owing their existence to the trapping of

particles in the wave’s potential, these structures require a ki-

netic Vlasov-Poisson description. Experimentally, they have

been first discovered in Q-machines by Refs. 1 and 2 and are

now ubiquitously found in laboratories and space. Holes are,

therefore, of paramount importance in modern plasma

physics, affecting transport anomalously via intermittent

turbulence.

Theoretically, the first consistent description of (solitary)

electron holes (EHs) has been presented by Ref. 3, based on a

method to solve the Vlasov-Poisson system,4 which differs

from the BGK method.5 Solitary EH solutions, obtained by

the original BGK method, have been presented, e.g., by Refs.

6–8. Reviews on EHs and other potential structures, such as

ion holes (IHs) or double layers (DLs), have been published

in Refs. 9–12. In these monographs elaborated lists of hole

observations in numerical, laboratory, and satellite experi-

ments can be found, besides generalized solutions of holes

in three-dimensional (3D), non-uniform, and magnetized

plasmas,13,14 in relativistic plasmas15 or in non-thermal

plasmas.16

A typical EH structure consists of a solitary potential

hump that moves near electron thermal velocity vte and

appears as a saturated state of a linear two-stream instability.

This characterization, however, turns out to be too narrow,

as trapped electron structures have meanwhile been

observed, which appear in the form of wavelets or even

potential dip structures that can move with velocities well

below vte and can surprisingly be found in linearly stable

plasmas, see e.g., Refs. 17 and 18. Moreover, the nonlinear

extension of the group velocity of an electron plasma wave

in Refs. 19 and 20 indicates that a new element is at work

the moment particle trapping comes into play.

This richness in its manifestations challenges plasma

wave theory. It is hence worthwhile to take these novelties

as motivation to study the periodic extension of EHs, intro-

duced in Refs. 21 and 10, more thoroughly.

The goal in the present paper, which for long stretches

reviews the subject, therefore, is to present and evaluate the

analysis in a self-contained manner, to uncover new proper-

ties of experimental and theoretical interest, e.g., in the mag-

netic reconnection process, to discuss its implications on

plasma wave theory, e.g., on the group velocity of a wavelet,

and to give an outlook on other dynamical, collective sys-

tems, such as shear flows, as a consequence of the underlying

trapping nonlinearity.

II. BASIC THEORY

We are looking for stationary, 1D, electrostatic waves,

which are traveling with wavespeed v0 in a collisionless,

unperturbed, thermal plasma. The electron motion in phase

space is governed by the Vlasov equation, which reads in the

frame moving with v0, i.e., in the wave frame,

½v@x þ U0ðxÞ@v�f ðx; vÞ ¼ 0; (1)

where normalized quantities have been used, based on the

density n0, and the temperature Te of the unperturbed plasma.

An appropriate solution is given by the following

Ansatz:3,4,22

f ðx; vÞ ¼ 1þ k2
0W=2ffiffiffiffiffiffi
2p
p hð�Þexp

"
� 1

2
ðr

ffiffiffiffiffi
2�
p
þ v0Þ2

" #

þ hð��Þexp

 
� v2

0
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expð�b�Þ

#
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(2)

where hð�Þ represents the Heavyside step function, r ¼ sgðvÞ
is the sign of the velocity, � :¼ v2

2
� UðxÞ is the single particle

energy, U the electrostatic potential, and v0 the not yet

known phase velocity of the expected structure. The first part

in Eq. (2) represents the free (or untrapped), the second part

the trapped electrons, distinguished in phase space by the

contour � ¼ 0, the separatrix. Depending on the two con-

stants of motion, r and �, f(x, t) is a solution of Eq. (1).

Note that this distribution function is continuous in

phase space, especially across the separatrix. It is suggested

by the replacement of v � r
ffiffiffiffiffi
v2
p

through r
ffiffiffiffiffi
2�
p

and by the

demand that it represents a shifted Maxwellian at the point

where the trapped particles are absent, i.e., at U ¼ 0. We

have assumed w.l.o.g. 0 � UðxÞ � W, where W represents

the amplitude of the perturbation. With this we have cor-

rectly incorporated the unperturbed plasma state given by

W � 0, being represented by the shifted Maxwellian:

fMðvÞ ¼ 1ffiffiffiffi
2p
p exp½� 1

2
ðvþ v0Þ2�. The parameter b in Eq. (2)

controls the amount of trapped particles and turns out to be a

necessary requisite for obtaining a closed self-consistent

description. A dip in the distribution function in the trapped

particle region in phase space, � < 0, is thereby provided by

b negative. The special form of the normalization in Eq. (2)

will be commented upon later.

To close the system, i.e., to find a self-consistent solu-

tion, we have to solve the second part, the Poisson equation,

which in the immobile ion limit becomes

U00ðxÞ ¼
ð

f ðx; vÞdv� 1 ¼: �V0ðUÞ: (3)

In the second step of Eq. (3) we have introduced the pseudo-

potential (often called Sagdeev potential), because its knowl-

edge allows by a quadrature to obtain the final shape of the

potential structure UðxÞ via the pseudo-energy,

1

2
U0ðxÞ2 þ VðUÞ ¼ 0; (4)

where we w.l.o.g. assumed V(0)¼ 0.
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The electron density in Eq. (3), valid for small ampli-

tudes, W�1, can be obtained in two ways: either by a direct

integration of Eq. (2) and a subsequent Taylor expansion of

the full nonlinear density expression, as was done in Ref. 4

or by a Taylor expansion of Eq. (2) first, followed by the ve-

locity integration, as was done in Refs. 10, 21, 23, and 21. If

performed correctly, both procedures, of course, must end up

in an identical expression, which in the present case becomes

nðUÞ ¼ 1þ k2
0W
2
� 1

2
Zr
0 v0=

ffiffiffi
2
p� �

U� 4

3
bðb; v0ÞU3=2 þ :::

� �
:

(5)

It should be mentioned explicitly that in Eq. (5), where

higher order terms are neglected inclusively the ordinary

square nonlinearity term, the only remaining nonlinear term,

which stems from trapping, is OðU3=2Þ and is hence the rul-

ing nonlinearity throughout the whole paper. In this density

expression the term � 1
2

Z0rðv0=
ffiffiffi
2
p
Þ can be interpreted as an

electronic shielding term9 and is defined by

� 1
2

Z0rðv0=
ffiffiffi
2
p
Þ :¼ P

Ð
1
v@vfMðvÞdv, where P stands for princi-

pal value, and ZrðxÞ represents the real part of the complex

plasma dispersion function for real arguments. The trapping

effects are incorporated in bðb; v0Þ, which is defined by

bðb; v0Þ ¼
1ffiffiffi
p
p ð1� b� v2

0Þexpð�v2
0=2Þ: (6)

A plot of the function � 1
2

Z0rðxÞ, displayed in Fig. 1, shows

that it has a zero transition at x0 ¼ 0:924 (
ffiffiffi
2
p

x0 ¼ 1:307), a

minimum of �0.285 at xmin ¼ 1:506 (
ffiffiffi
2
p

xmin ¼ 2:13), and is

positive for x < x0 and negative for x > x0 and vanishes at

infinity. Since, according to Eq. (5), it holds x ¼ v0=
ffiffiffi
2
p

,

there hence exist two separated regions for the phase veloc-

ity: a slow one with 0 � v0s � 2:13 and a fast one with

2:13 � v0f .

A solution of our problem is then obtained by

demanding

(i) VðUÞ < 0 in 0 < U < W and

(ii) VðWÞ ¼ 0,

the latter expression representing zero electric field at poten-

tial maximum. After substitution of Eq. (5) into Eq. (3) and a

subsequent U-integration we get VðUÞ and from it the two

equations,

k2
0 �

1

2
Z0rðv0=

ffiffiffi
2
p
Þ ¼ B; (7)

� VðUÞ ¼ k2
0

2
UðW� UÞ þ B

2
U2 1�

ffiffiffiffi
U
W

r !
: (8)

In Eq. (7) B is defined by

B ¼ 16

15
bðb; v0Þ

ffiffiffiffi
W
p

; (9)

and represents the condition (ii) and is called the nonlinear

dispersion relation since it determines v0 in terms of B and

k0, i.e., the phase speed v0 is a derived quantity here. (We

note in parenthesis that Eq. (7) is called later more precisely

quasi-nonlinear dispersion relation. The reason is that k0 is

generally not identical with k, the wave number of the peri-

odic structure. Only in the harmonic or near-harmonic limit

both coincide.4,10) Equation (8) determines the spatial wave

form (or spectral content), as mentioned. It is constrained by

(i). Note that in the present theory of a zero background cur-

rent there are three independent parameters, k0, B, and W,

which control everything. The other two parameters are

derived ones: v0 is determined by Eq. (7) and b follows from

the definition of B, namely from Eq. (9) with Eq. (6).

As was shown in Ref. 21 one can incorporate a further

free parameter, the drift velocity vD between electrons and

ions in an unperturbed, current-carrying plasma and hence

extend the present theory by a fourth independent parameter,

allowing a broader physical application. To catch this case,

we have simply to replace v0 in Eqs. (7) and (9) by vD � v0.

Strictly speaking, we in addition have to assume that ion

trapping effects are negligible and that the phase velocity is

well above ion sound velocity. If the latter assumption is not

made, allowing for finite ion mass (and temperature) effects,

we get an additional term on the l.h.s. of Eq. (7), given by

� h
2

Z0r

ffiffiffiffi
h

2d

q
v0

� �
, where h ¼ Te=Ti and d ¼ me=mi.

10 It can be

interpreted as an ionic shielding term. We shall come back

later in Sec. VI to this situation.

We mention another generalization. Replacing fMðnÞ
by an arbitrary free particle distribution f0ðnÞ and

1ffiffiffiffi
2p
p expð�v2

0=2Þ expðbn2=2Þ by an arbitrary trapped particle

distribution ftðjnjÞ, Eq. (2) can be generalized to

f ðx; vÞ ¼ ð1þ k2
0w=2Þ½hð�Þf0ðnÞ þ hð��ÞftðjnjÞ�; (10)

where n is the generalized velocity, defined by

n :¼ r
ffiffiffiffiffiffiffi
j2�j

p
.21,23 By Taylor expansion around n ¼ 0 it is then

found, see e.g., Appendix of Ref. 21, that bðb; v0Þ becomes

bðb; v0Þ ¼ �
ffiffiffi
2
p
½f 000 ð0Þ þ ft

00ð0Þ�: (11)

The density expression generalizing Eq. (5) is then obtained

by the new expressions, provided that continuity at theFIG. 1. (Color online) The function � 1
2

Z0rðxÞ.
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separatrix, f0ð0Þ ¼ ftð0Þ, is assumed. If we lifted the latter

assumption, allowing a jump of f at the separatrix, an addi-

tional term of Oð
ffiffiffiffi
/
p
Þ in the density expression would arise,

changing the entire analysis and physical background. Equa-

tions (7) and (8), which are our main result, will be analyzed

further in the following sections. Before this, however, we

call attention to the relationship between linear and nonlinear

wave analyses, especially in the infinitesimal wave ampli-

tude limit W! 0þ.

III. INTRINSIC NONLINEARITY

First, as can be seen from the nðUÞ and VðUÞ expres-

sions, the independent parameter k0 introduces a spatial

periodicity, noting that it holds U00ðxÞ ¼ k2
0W at potential

minimum, where U ¼ 0. The curvature is, therefore, nonzero

there and positive as long as k0 6¼ 0, representing a finite

wavelength structure. (There is one exception to be men-

tioned later.)

Second, Eqs. (7) and (8) have a very appealing simple

form, reminiscent of the van Kampen description24 of linear

waves, more concretely of the wave continuum found there.

In the latter, the perturbed distribution function is given by

(see also Ref. 10),

f1ðx; vÞ ¼ �P
f 00ðvÞ
v� v0

� kdðv� v0Þ
� �

UðxÞ: (12)

We would, however, be too rash in our judgement if we

stopped here and declared the present structures as the non-

linear extension of van Kampen modes, as found in the liter-

ature. The truth is somewhat more subtle, demanding a

closer look especially at the microscopic details.

First of all, van Kampen modes or wave packets com-

posed of a superposition of van Kampen modes (or similar

linear modes, such as the damped modes of Ref. 25) do not

solve the correct equation but an equation, which has been

truncated by linearization. The common belief is that in the

infinitesimal amplitude limit this does not matter. That this is

not so is seen from the corresponding DF at resonant velocity

(see Fig. 2). The DF for a linear wave packet is composed of

more or less singular functions, representing partially ballis-

tic particles, and is hence rough and filamentary. Such wave

packets generally decay in time due to phase mixing exhibit-

ing Landau damping, as Ref. 26 has pointed out. Even if one

relaxes this severely restricted construction by choosing less

singular, or nonsingular, but still linear functions, as was

done by Ref. 25, a damping remains albeit less strong.

To obtain zero-damped structures the DFs have to

satisfy the full Vlasov equation without limitation. More-

over, they should be smooth and continuous to be physically

meaningful, such as the asymptotic coarse-grained distribu-

tions of Ref. 27 in the nonlinear Landau damping scenario

(Ref. 28). Our distribution f(x, t) in (2) is of this quality.

In other words, although from a macroscopic point of

view our small amplitude solutions are reminiscent of van

Kampen modes, the underlying microscopic physics indi-

cates a qualitative difference with respect to the latter, which

cannot be removed by taking the infinitesimal amplitude

limit, a conclusion first drawn by Ref. 29.

We now deepen this conclusion by collecting further

evidence of the nonlinear nature of the present structures.

We shall call them PROOFs to be interpreted in the theoreti-

cal physical sense. They are not independent of each other

but illuminate the subject from different viewpoints.

Proof 1. Consider the most simple case, B¼ 0, which

corresponds to monochromatic, or as we say harmonic

waves. In this case our solution exactly reproduces the van

Kampen solution, as long as the focus is restricted on

Eqs. (7) and (8) only. Microscopically, however, although

the most singular part, the d-function contribution to f1 is

absent in van Kampen’s solution, there still remains the

FIG. 2. Zoom on the resonant distribution

functions of linear and nonlinear theory in

velocity space. (a) The unperturbed (Maxwel-

lian) velocity distribution function fMðvÞ, the

van Kampen’s linear distribution function

fMðvÞ þ f1ðx; vÞ as well as the nonlinear distri-

bution function f(x, t) as given by Eq. (2) with

W ¼ 1=100. Note the divergence of the linear

perturbation and the trapped range of f(x, t)

in (�
ffiffiffiffiffiffiffi
2W
p

,
ffiffiffiffiffiffiffi
2W
p

). (b) Perturbations to the

Maxwellian in the linear and nonlinear theories.

(c) Velocity derivatives of the Maxwellian and

the linear and nonlinear perturbations.
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singularity stemming from the principal value integral,

whereas our distribution is smooth and well behaved. The

latter is seen very easily if we anticipate the results from the

next section. For B¼ 0 the phase velocity of the (slow) har-

monic waves lies in the range 1:307 < v0 < 2:13, from

which we can deduce that the trapped particle parameter b,

given from Eqs. (6) and (9) by b ¼ 1� v2
0, is negative, yield-

ing a depressed trapped particle region and an altogether

well behaved distribution. Note that B can become zero with-

out taking the infinitesimal amplitude limit W! 0þ.

A typical distribution function f(x, t) for such a harmonic

wave at potential maximum is plotted in Fig. 2(a) (solid line)

together with the Maxwellian (dashed line) and the corre-

sponding van Kampen distribution (dotted line). The vertical

dotted line indicates the location of the phase velocity.

(For simplicity the normalization factor 1=
ffiffiffiffiffiffi
2p
p

has been

replaced by unity.) The selected numbers are v0 ¼ 1:6 and

W ¼ 1=100, corresponding to k0 ¼ 0:354 and b ¼ �1:56. For

this b the dip in the trapped particle distribution, albeit present,

is almost invisible. Fig. 2(a) shows that f(x, t) is smooth and

well-behaved contrary to van Kampen’s distribution with its

giant principal value singularity at phase velocity (not to speak

about its negativity in the lower velocity range close by).

We conclude that even in the monochromatic wave

limit, where on the macroscopic basis both solutions, the van

Kampen mode solving the truncated linearized Vlasov-

Poisson (lVP) system and our sinusoidal EH solution solving

the full Vlasov-Poisson system, cannot be distinguished,

there are obvious differences on the microscopic level and

on the time-behavior of the wave packet when subject to the

correct evolution equation (see later). Since the physics takes

place in phase space, it is our solution which deserves the

term “physical” rather than the van Kampen solution. The

merit of the latter, in spite of its deficiency not to be a solu-

tion of the correct equation, is that it comes closest to the

real one, as long as one ignores microscopic and temporal

details.

Since this is the simplest wave structure to be analyzed

most easily, let us, therefore, repeat our main assertion:

whereas our solution is stationary and well-behaved in phase

space, the van Kampen solution, albeit stationary within the

lVP-system, is ill-behaved in phase space and will decay in

time, because it has to be subject to the full VP-system.

There is obviously no link connecting the two worlds, the

function spaces of lVP and of VP.

Proof 2. A similar conclusion can be drawn for B 6¼ 0,

which reads in van Kampen’s theory k 6¼ 0. Through it one

can shift the phase velocity to an arbitrary value, producing

thereby the van Kampen wave continuum. A single mode is

now faced with the stronger d-function singularity. For a

wave packet, obtained by a superposition of such modes of

the same phase velocity, the distribution function will be less

singular (or perhaps be even nonsingular) but its roughness

will remain, being associated with damping, e.g., by phase

mixing, when subject to real physics. This is in contrast to

our solution, which is smooth and well-behaved and does

not decay in time. From the next section we will see that a

concrete wave form and a concrete phase velocity v0 are

associated with a given k0 and B. For a given B and v0, the

parameter b, which is determined through Eqs. (6) and (9),

will generally be negative, giving rise to a smooth, depressed

distribution. It will still depend on the amplitude W and even

in the infinitesimal amplitude limit, when b becomes propor-

tional to �1=
ffiffiffiffi
W
p

, the distribution function will remain

smooth, exhibiting a tiny dip at resonant velocity merely.

There is no unusual or unphysical behavior associated with.

In the superposition of van Kampen modes of the same

phase velocity v0 there is an exceptional case, namely when

the expansion coefficients are chosen such that they exactly

reproduce the actual CEH structure UðxÞ, see Ref. 10. With

this one again has a macroscopic identity with Eqs. (7) and

(8) and hence again closest approach between both descrip-

tions; the microscopic distinction and the different

t-behavior, however, remain. And, of course, the very spe-

cific values of the infinite Fourier expansion coefficients,

which decrease slowly and alternate in sign with increasing

harmonic number, cannot be suggested without the knowl-

edge of the CEH solution. There is hence no chance to meet

our physical structures by a method different from the actual

one, which not only applies for linear wave packets but also

for the nonlinear solutions obtained by the original BGK

method.5 (Some more details are presented in Sec. IV.)

Proof 3. Let us define the nonlinear perturbation of the

distribution function by df :¼ f ðx; vÞ � fMðvÞ, where fM is

again the unperturbed shifted Maxwellian. Taking its veloc-

ity derivative, it is easily seen that there are regions in phase

space where the inequality j@vdf j � j@vfMj is violated, as

would be required for linear wave theory to be applicable.

Near the center of the trapped region at constant x, for exam-

ple near � ¼ �U, the derivatives are indeed of equal size

since @vf ðx; vÞ vanishes or is very small there. For an illustra-

tion, coming back to the harmonic wave in Fig. 2, we plot

the nonlinear df (solid line) and the linear f1 (dotted line) in

Fig. 2(b) and the velocity-derivatives of df , fM, and f1 in

Fig. 2(c). We see that j@vdf j is of equal size as j@vfMj and,

more seriously, that j@vf1j becomes giantly large and singular

near the phase velocity, such that its neglect in a linear wave

theory is more than suspect. The anomaly of the velocity

derivative of df just outside the trapped range in Fig. 2(c) is

a relic of the
ffiffi
�
p

dependence of the free particle distribution

function and appears for any chosen function as long as

v0 6¼ 0. Since it is restricted to a small area of � ¼ 0þ it will

be wiped out by processes like coarse graining or faint colli-

sions and is hence not considered as an obstacle for the phys-

ical relevance of our present structures. On the other hand,

these processes, when applied to the linear distribution, will

not prevent the wave from damping. The reason is the trap-

ping oscillations performed by the free particles after cap-

ture, which extract wave energy in favor of particle energy,27

whereas in the nonlinear theory the trapped particle region

represents a “buffer” for balancing the energy exchange dur-

ing the wave-particle interaction.

We infer that the term U0ðxÞ@vdf in the Vlasov equation

is crucial and nonnegligible for this kind of structures.

Proof 4. Another proof is of numerical nature and

has been given by Refs. 21 and 11. If we take our solution as

initial data and solve the Vlasov-Poisson system in time,

the full Vlasov-Poisson solver exactly reproduces the
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time-stationary solution, whereas the linearized Vlasov-

Poisson solver provides a damped solution only. Not only

the correct description in phase and real space is necessary

but also the correct evolution equation in time must prevail.

A linear code does not know how to handle a correct wave

input precisely.

Proof 5. Moreover, it could be shown again numerically

in Refs. 11 and 30–35 that in a current-carrying plasma, i.e.,

when a drift between electrons and ions exists in the unper-

turbed state, the system can be nonlinearly unstable by the

excitation of electron and ion phase space holes, even in a

linearly stable situation, i.e., below threshold of linear two-

stream instability. This nonlinear instability preferentially

excites holes of zero-or negative energy being triggered by

seed fluctuations in a noisy plasma background and requires

mobile ions to occur,11,32,33,35 as given in a real, driven

plasma.

Proof 6. And last but not least, coming back to our start-

ing equations, we can provide a more direct proof of the

intrinsic nonlinearity. In a typical cnoidal hole structure, all

three terms in Eq. (7) are finite and of the same order. Hence,

k2
0 and B are comparable quantities and the last term in Eq.

(8), which reflects nonlinearity, is of the same order as the

preceding linear term, namely OðW2Þ, a fact that remains

true up to the infinitesimal amplitude limit. There is no

threshold value for W below which the last term would be

negligible and hence linearity would prevail. This can also

be seen from the density expression (5), in which all three

perturbed terms contribute at the same level, namely at

OðWÞ, noting that with (9) it holds bðb; v0Þ � B=
ffiffiffiffi
W
p

.

In the following sections, we will give further arguments

in favor of nonlinearity valid even for a weakly dissipative

kinetic system.

In conclusion, linear wave theory is generally nonsuited

as a starting point for the investigation of plasmas that are

excited by long-living electron hole structures. Plasmas

excited by such persistent trapped particle structures are not

only kinetic but also fundamentally nonlinear.

Third, there is another point worth to be mentioned. The

simple form of the determining equations (7) and (8) is

achieved by elimination of v0 from VðUÞ and using W as the

independent external parameter, as mentioned. Often other

ways of dealing with trapped particle solutions of the one or

the other sort are found, which use v0 instead of W as the

external parameter and focus on the wave profile, ignoring

the second part, the solution of the NDR. They unfortunately

appear, as a consequence, incomplete and less transparent,

due to this different handling of the VP system. Moreover,

they are often faced with the problem that w comes out O(1)

even though a small amplitude theory is being intended.

IV. WAVE PROPERTIES IN DETAIL

The region in the (B; k2
0)-parameter space for which

coherent wave solutions exist is limited through the solubil-

ity of the NDR (7) and the positivity of –V in 0 < U < W. It

is found to be

k2
0 ¼ 0 0 < B � 1; (13)

0 < k2
0 < 0:095 �2k2

0 � B � 1þ k2
0; (14)

0:095 � k2
0 k2

0 �0:285 � B � 1þ k2
0: (15)

The corresponding wave spectrum includes solitary electron

holes (k2
0 ¼ 0) given by Refs. 3, 4, 9

UðxÞ ¼ Wsech4 x

L

� �
; (16)

with a half-width of L ¼ 4=
ffiffiffi
B
p

, B> 0 purely harmonic

waves (B¼ 0, sometimes mistaken for linear waves),

UðxÞ ¼ W
2
½cosðk0xÞ þ 1�; (17)

as well as a special solitary potential dip (SPD; B ¼ �2k2
0),

represented by the special pseudo-potential,

� VðUÞ ¼ k2
0

2
UðW� UÞ � 2U2 1�

ffiffiffiffi
U
W

r ! !
; (18)

and given by Eq. (3.33) in Ref. 21. (We quote in parenthesis

that the sech4 expression for a solitary trapped particle struc-

ture has first been obtained by Ref. 36 for small amplitude

ion bipolar structures.) All the other waves are periodic in

space and are represented by Jacobian elliptic functions,4,21

such as cn(x), justifying the notation cnoidal electron holes

(CEHs).

They can be classified by means of the parameter S
defined by S :¼ B=k2

0, also called “steepness parameter,”

because it stands for the steepness or distortion of the wave

form from sinusoidal shape, the latter being given by S¼ 0.

A constant S would be a straight line going through the ori-

gin in the ðB; k2
0Þ space, i.e., in the existence diagram pre-

sented later. The range of S is thereby bounded by �2 � S,

where S¼ –2 and S!1 represent the solitary SPD and

SEH structures, respectively. It is seen later that S > 0 is a

rarefactive wave, having an extended potential valley,

whereas �2 � S < 0 is a compressional wave with an

extended potential hill region.

Of special interest are periodic, rarefactive solutions

close to and including SEH. It holds for 1=4 � S,4,21

UðxÞ ¼ W 1� K
1� cnðujmÞ
1þ cnðujmÞ

� �2

; (19)

where we have defined

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=S

p
m ¼ 1

2
1þ 1þ 2S

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 2Þ

p" #
u ¼ ½SðSþ 2Þ�

1
4ðk0xÞ=2:

Fig. 3(a), in which UðxÞ=W is plotted, gives an impression

of that structure for S¼ 8, B¼ 1, k2
0 ¼ 1=8 and v0 ¼ 0:37,

corresponding to K¼ 1.118, m¼ 0.975, and u¼ 0.53 x. We

recognize a periodic potential structure with a somewhat

broadened valley and a weakly contracted hill. Here we have

assumed that the periodicity interval (box) is repeated infin-

itely, which implies identical trapping conditions for each

020501-6 Hans Schamel Phys. Plasmas 19, 020501 (2012)



repeated interval. Since, however, each potential hump is

isolated from its neighbor concerning electron trapping and

because in different regions usually different trapping

scenarios are in action during the creation of the structure, a

wavelet structure, as indicated in Fig. 3(b), may be more

typical. In such a wavelet structure, all humps do have the

same values of k0, B, and v0, i.e., move with the same phase

velocity and hence the “wave packet” will not disperse.

Nevertheless, each hump can have its individual pair of

ðw; bÞ-values belonging to the given B and v0 according to

Eq. (9). The selected values for a five hump, symmetric

wavelet structure, as shown in Fig. 3(b), are S¼ 16, B¼ 1,

k0 ¼ 0:25, and v0 ¼ 0:3 corresponding to K¼ 1.061,

m¼ 0.986, and u¼ 0.515x. For the central peak we have cho-

sen: (w0 ¼ 1=100, b0 ¼ �16:5), whereas the two neighbor-

ing peaks are determined by (w1 ¼ 2w0=3; b1 ¼ �20:4) and

(w2 ¼ w0=3; b2 ¼ �29:2), respectively, but any pair of

(w; b) could have been chosen as well, as long as they follow

from Eq. (9) for given B and v0. We like to stress again that

all humps in Fig. 3(b), which in the general case have not to

be distributed symmetrically, have the same phase velocity

v0 such that the velocity of the whole packet is still given by

v0 as in the unmodulated cnoidal wave case, Fig. 3(a). The

“group velocity” of this wavelet is still given by v0 and has

hence nothing to do with the standard group velocity con-

cept, as described more thoroughly in Sec. VI C. We also

like to mention that the amplitude of a hump is smaller, the

deeper the trapped electron region is excavated, a fact to

which we will discuss later in Sec. VI B.

We notice that a CEH wavelet, defined this way with

only few humps (2, 3, 4... humps) and abbreviated for the

sake of brevity by “CEHWL,” represents a new localized

nonlinear trapped particle state in addition to the SEH in the

rarefaction regime. (We remember that in the compressional

regime another localized member exists, the SPD solution.)

That a different trapping state and a different amplitude can

still yield the same phase velocity is not new and has already

been found for SEHs in Ref. 37 (see, e.g., Fig. 3 of that

paper). It is expected that both structures, which are distin-

guished by the parameter k0, i.e., essentially by the shape,

can be excited under the same conditions, and may, there-

fore, appear in company. In Sec. VI B we will present first

examples of their simultaneous existence in space and

simulations.

Note that the SEH, obeying S!1; k2
0 ! 0 andffiffiffi

S
p

k0 ¼
ffiffiffi
B
p

, is simply obtained from Eq. (16) by setting

K¼ 1, m¼ 1, u ¼
ffiffiffi
B
p

x=2, and cnðuj1Þ ¼ sechu.

From these expressions for UðxÞ, which are too sophisti-

cated to be guessed a priori, it becomes clear that the BGK

method,5 which presumes the knowledge of UðxÞ, is not

suited for finding our solution. Only the kinetically general-

ized pseudo-potential method of Refs. 4, 10, and 23 is able

to provide it. A BGK solution is typically discontinuous at

the separatrix or the searched trapped particle distribution fet

possesses a singularity or a singular velocity derivative

there,10,16,23 which would be the case if we, for example, had

chosen the function eb
ffiffiffiffi
��
p

in the second part of Eq. (2)

instead of ebð��Þ. More seriously, fet may even be negative.38

In other words, such a f(x,v) would be less smooth and less

physically meaningful. The usage of the terminology “BGK

holes” for the present structures would, therefore, be too

crude and undifferentiated. With respect to regularity deficits

of BGK holes we refer to a forthcoming publication.39

Fig. 4 shows the existence diagram of nonlinear wave

solutions in the ðB; k2
0Þ-parameter space, which is bounded

by thick solid lines, representing the inequalities (13–15), as

mentioned. Waves with constant phase velocity v0 lie on a

straight line defined by

D :¼ B� k2
0 ¼ const: (20)

Two wave branches can be distinguished, separated by

v0 ¼ 2:13 (resp. D¼ –0.285). The fast branch with

FIG. 3. (Color online) Cnoidal wave structures. In (a) a periodic train of

cnoidal EH structures is shown, all humps being characterized by the same

set of parameters. In (b) all humps have the same speed but different ampli-

tudes and trapping parameters. This often met structure in experiments and

simulations is called cnoidal electron hole wavelet (CEHWL).

FIG. 4. (Color online) Existence diagram: solutions exist in the shaded

region, i.e., between the lines D¼ 1 and D¼ –0.285 and the lines of SEHs

and SPDs. Lines of D¼ constant mark waves of the same phase velocity v0.
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2:13 < v0f includes the classical Langmuir branch modified

by trapping, and the slow branch with 0 � v0s � 2:13

represents phase velocities in the thermal range. Whereas

Langmuir waves survive in the linear limit (as indicated later

in Fig. 5 for B¼ 0), the slow branch as a linear solution does

not; for its existence trapping, and hence nonlinearity, turns

out to be essential.

Fig. 5 shows the quasi-NDR, x0 :¼ k0v0 as a function offfiffiffi
2
p

k0 for the spatially periodic CEHs. Lines of constant B
are drawn. Of special interest is the line B¼ 0 not only

because it includes the Langmuir branch, as predicted by

Ref. 40, but also because it separates the harmonic waves

(B¼ 0) from the multi-harmonic nonlinear wave branches

(B 6¼ 0). B is, therefore, also called spectral parameter. Note

that for B > 0 and the fast branch there is a cut-off at lower

k0 given by
ffiffiffi
B
p

< k0 which is determined by D¼ 0. The

dashed line, defined by D¼ –0.285, is the separating line

between the fast and slow branches. For B < 0 no solution

exists for k0 <
ffiffiffiffiffi
�B
2

q
, i.e., below the SPD solution, which is

indicated by crosses. The minimum possible B is given by

Bmin ¼ �0:19, which is located at
ffiffiffi
2
p

k0 ¼ 0:436.

An important contribution of the trapping nonlinearity

to the spectrum of electrostatic waves are the acoustic modes

of the slow branch and B � 0, as these modes entirely lie in

the thermal wing of the distribution function and exist due to

a proper modification of the latter at phase velocity, ruling

out Landau damping. Because of their relevance in experi-

ments (see also later) they have gotten an extra nota-

tion,3,9,41,43 and are termed slow electron acoustic waves

(SEAWs). They are thus the periodic extension of SEHs and

are sometimes referred to as the acoustic modes underlying

solitary electron holes.

Note that the general expression of the electron density

in terms of ðB; k2
0Þ is given by

neðUÞ ¼ 1þ k2
0

2
Wþ ðB� k2

0ÞU�
5B

4
ffiffiffiffi
W
p U

3
2 þ 	 	 	 (21)

From this follows that all structures are rarefactive in the

sense that neðWÞ < neð0Þ. Since, however, the SPD has

zero potential at its center its central density is increased in

comparison with its neighboring values, especially with its

asymptotic value, where U ¼ W and neðWÞ ¼ 1. The SPD

structure with its opposite polarity is hence effectively com-

pressional. More generally, the dividing line between rare-

factive and compressional waves in the latter sense is

essentially given by B¼ 0, the harmonic wave line or by

S¼ 0, as mentioned.

To see the consequences of the slow branch for the par-

ticle distribution function, e.g., in case of a SEH with k0 ¼ 0,

take a B with 0 < B � 1, the corresponding v0 with

0 � v0 < 1:307 and a W satisfying W << 1 and insert them

into b, which follows from Eq. (9) with Eq. (6):

b ¼ 1� v2
0 �

15

16

ffiffiffiffi
p
W

r
B exp

v2
0

2

� �
: (22)

It is found that b is negative in this domain and hence stands

for a depression of the distribution function at phase

velocity.

(To be somewhat more concrete, take w ¼ 1=100 and

get: b¼ 15.6, 14.3, 12.3, 9.7, 6.2, and 0.7 for B¼ 1, 0.8, 0.6,

0.4, 0.2, and 0, respectively. The corresponding v0-values are

v0¼ 0, 0.5, 0.71, 0.89, 1.1, and 1.307. With increasing phase

velocity b decreases magnitude-wise, i.e., the dip becomes

less pronounced.)

On the other hand, if we are in the compressional region

B < 0 within the allowed range (the triangle in Fig. 4) and

take the fast branch with a velocity well above 2.13, we

would find from Eq. (22) a very large positive b, correspond-

ing to a beam-type distribution function. A stationary, com-

pressional, nonlinear Langmuir wave, therefore, would need

a trapped beam to become nonlinearly existent. This result

should, however, be treated with caution since typically

j�b�j would no longer be small, such that the Taylor expan-

sion used to get Eq. (5) breaks down. For the fast branch a

full amplitude analysis, such as in Ref. 4, is usually called

for.

We finally mention that within our restriction of immo-

bile ions and of small amplitudes, a beam-type electron dis-

tribution admits (besides periodic waves) the SPD solution

only, a DL solution being not included. To have access to

the latter, we must allow beam-type mobile ions and finite

amplitudes, as shown by Refs. 43 and 44 for the so-called

strong DL.

V. MISCELLANEOUS

We are aware that the offered solutions represent only a

small section in the general class of nonlinear wave solutions

of the VP system, being characterized by a simple ðx� v0tÞ-
behavior and restrained further by treating electron dynami-

cal effects only. Since our main concern is to show that

solutions are thrown away by linearization, which are then

missing in a general plasma dynamical context, we have con-

centrated on this most simple configuration because already

there the primacy of the trapping nonlinearity in comparison
FIG. 5. (Color online) Quasi-nonlinear dispersion relation (NDR) with

x0 :¼ k0v0.
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with the ordinary nonlinearity, being quadratic in the wave

amplitude, comes out relatively easily, as shown.

On the other hand, since there exists already a large

body of physical and mathematical literature dealing with

similar aspects, we are aware that at least some of them

should be mentioned in a review. Therefore, to narrow this

gap, and thereby broaden the basis, we refer to some adjacent

topics, such as accessibility and stability of these structures,

higher dimensional and magnetic effects, etc., and give some

further experimental demonstrations of these structures in

different physical environments.

Of course, a more general review should also cover sim-

ulations and a still deeper look at the space and laboratory

observations. Unfortunately, such an undertaking would need

much more effort and time. We, therefore, apologize to those

whose work has not or not adequately been mentioned and

refer to some already existing reviews such as Ref. 11 or 12.

A. Access, existence, and more dynamics

A plasma driven by an external agent shows, depending

on the driving strength, typically a rather complex space-

time behavior that is characterized by many spatial and tem-

poral scales. In such a general picture a solution seems to be

out of reach such that simplifications are unavoidable.

One approach is that after the elapse of some time a

dynamical evolution emerges, which is characterized by

long scales only. As shown in Ref. 45 (see also Ref. 9) a

coherent wave in this long time regime is governed dynami-

cally by the Schamel equation, being a modified Korteweg-

de Vries-type evolution equation, in which the square

nonlinearity is replaced by the stronger 3/2-power trapping

nonlinearity. Solitary EHs propagating near the critical

velocity v0c ¼ 1:307 are found to be stationary solutions of

this wave equation. Moreover, since this equation is not

completely integrable, as suggested by the works of

Refs. 46–48, the coalescence of SEHs, copropagating with

nearly the same speed as seen in simulations and experi-

ments (see, e.g., the Risø experiment2), does come as no

great surprise.

A different Ansatz for solving the VP system as an ini-

tial value problem has been employed by Ref. 49. These

authors developed a new procedure for the analysis of the

long-time behavior for a certain class of initial conditions by

decomposing the VP problem into a transient part and a

time-asymptotic part. Focusing on the time-asymptotic part

they could solve a corresponding bifurcation problem with

the initial condition and the transient field playing the role of

parameters. Their main result is that if the VP system pos-

sesses a nonzero small-amplitude time-asymptotic solution

the corresponding field is given at leading order by a super-

position of traveling-wave modes associated with the roots

of a “time-asymptotic” Vlasov dispersion relation. In other

words, they underpinned mathematically the existence and

accessibility of our present traveling modes in the B¼ 0 limit

(if one accepts a kind of coarse graining for the latter). For

some reason, however, they miss the B 6¼ 0 branch, which

contains as important members the physically relevant SEHs

and CEHWLs, respectively. A presumption is that the

chosen C1-class of functions may be too narrow to encom-

pass also the B 6¼ 0 class, noting that our functions do not

fall within this C1-class. In this respect we refer to another

mathematical paper published recently by Lin and Zeng50 in

which a Sobolev space with a low regularity requirement has

been chosen instead to approve the absence of nonlinear

Landau damping and the existence of long term BGK-like

states for a certain class of initial conditions, the latter being

in accord with our numerical findings, presented, e.g., in

Ref. 35, in which non-Landau damped initial fluctuations in

a noisy plasma are found to be the cause of our states.

Note also that the time-asymptotic superposition of

phase-space holes (or streets of them) in Vlasov plasmas is

nowadays a well established numerical fact.51–53

B. Stability and magnetic effects

This is a vast field, which can be considered in a few

points only. An important issue is the stability of CEHs,

especially of SEHs.

Theoretically, the stability analysis of inhomogeneous

phase space equilibria is a formidable task because integra-

tions along non-straight line particle orbits (characteristics of

the Vlasov equation) are invoked, which are hard (if not

impossible) to be performed analytically. Again, simplifica-

tions seem to be unavoidable.

An outcome in case of linear transverse instability of a

1D, solitary EH in an unmagnetized plasma (B0 ¼ 0) has

been found by the author54 (see also Ref. 9) by making use

of a general framework developed by Ref. 55 (see also

Ref. 56). Solving a nonlocal linear eigenvalue problem in the

so-called fluid limit and subsequent truncation (for which a

justification is missing), he found longitudinal stability but

unconditional, transverse instability of a SEH that explains

the numerical observations of Refs. 57 and 58, namely the

disappearance of vortex structures in spatially higher dimen-

sions. (We add in parenthesis that a CEHWL instead of a

SEH may turn out longitudinally unstable in 1D because of

the coalescence instability, being a slow process.)

In a magnetized plasma (B0 6¼ 0) the situation is still

more complex because, besides the adaptation of the equilib-

rium to this case (see later), particle orbits exhibiting now

both bouncing and gyration are involved. A numerical

approach to this case has been presented in Ref. 59, which

simulated with a particle-in-cell (PIC) code the transverse

(in)stability of a non-propagating BGK electron hole. Their

general findings for an anisotropic background plasma

(Te? < Tek) are that SEHs are stable against transverse

perturbations provided that Xe > xbe, where the cyclotron

and bounce frequency, respectively, are given by

Xe ¼ eB0=me=xp and xbe ¼
ffiffiffiffi
w
L2

q
¼

ffiffiffiffiffi
Bw
p

4
, respectively, xp

being the plasma frequency and w; L the amplitude and width,

respectively, of a SEH (see Eq. (16)). This means that lower-

ing the product Bw / ð1� b� v2
0Þ expð�v2

0=2Þw3=2 > 0

increases the stability of a SEH in a magnetized plasma, i.e., a

smaller amplitude, a larger propagating speed (lowering

B < 1, see Fig. 4) and a less deep hole in the distribution
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favor stability. The stability increases further when the plasma

becomes more isotropic.

A partial confirmation of this numerical result could be

given in Ref. 60, which studied the stability of a 1D SEH in

the presence of a background magnetic field, using a fully

linearized Vlasov description for the small perturbations.

They found within a broad range of plasma parameters a

destabilization through the resonant interaction of the wave

with the trapped and free particles. In case of the high-

frequency cyclotron resonance, however, i.e. when the wave

frequency x, being within the bounce frequency (x 
 xbe),

is close to the gyrofrequency Xe, a transition from instability

to stability could be seen when xbe becomes smaller than

Xe, in accordance with the numerical results of Ref. 59. For

low-frequency resonances, an instability was always seen,

leading to the conclusion that long-living structures observed

by the satellite missions are likely to be fully 3D (or quasi

3D) and that for their stability behavior probably the full ?
dynamics of electrons and ions needs to be accounted for.

The often met belief in a complete disintegration of 1D

SEHs in higher dimensional, magnetized plasmas must

hence at least be modified and be restricted to low frequency

resonances. By the way, this finding with respect to high fre-

quency perturbations is confirmed by the observations made

in space, namely that the most intense fields are observed

close to the Earth where the magnetic field is strongest, as

pointed out in Ref. 59. The former is also in accord with ear-

lier simulations of Ref. 61, where two classes of coherent

structures were seen. While the large structures were quickly

unstable, the weaker ones were stable. A similar finding was

more recently reported in Ref. 62.

So, even in weakly magnetized plasmas (Xe < 1), EHs

might exist as weak structures, although not necessarily as

1D structures.

This brings us to the next issue, the construction of 2D

and 3D EH equilibria in magnetized plasmas.

When the magnetic field is very strong (effectively

infinite) the 1D EH solution is mostly applicable, not only

because of its proved stability but also because of its very

definition (particle orbits in the 2D phase space (x,v)). For

weaker magnetic fields corrections are indispensible.

This is of course a difficult task again and can only be

performed approximately.

One reason is that in the presence of B0 and higher

dimensions further conserved quantities, other than the

energy and the velocity sign of untrapped particles, are

needed, which are, however, virtually impossible to calcu-

late, since the spatial distribution of the electrostatic poten-

tial is not known in ad\roundvance to get a solution of the

Vlasov equation in the 6D phase space. A simplification is to

reduce the dimensions by invoking the drift-kinetic approxi-

mation for the electrons, as done in Ref. 14. Looking for

traveling wave solutions and utilizing an electron distribu-

tion function similar to Eq. (2), these authors were able to

derive and solve a generalized Poisson’s equation valid for

SEHs in a magnetized plasma. Two different solutions could

be found and explored numerically. One depends only on

ðz; vkÞ and R(x, y), where z is now the coordinate along the

straight-line magnetic field and x, y are the perpendicular

coordinates. This so-called “parallel solution” is found to be

ellipsoidal in shape with comparable size of the ? and k
scales, when Xe > 1 (e.g., in Earth magnetosphere). When

Xe < 1 (e.g., deep in the magnetotail) the perpendicular

scale is found larger by the factor 1=Xe. The second solution,

called “oblique solution,” is 2D in a reference frame that is

tilted relative to the z axis. In this case the parallel electron

momentum provides a further invariant. This oblique 2D

solution is cylindrical in shape with a larger k than ? scale.

For more details, especially for the interpretation of satellite

data, we refer to the original publication and to the review of

Ref. 12. Note that in these solutions the parameters are

chosen such that ion dynamics is negligible, such as in the

whistler or upper-hybrid frequency regime.

This is different for holes being related to the fast mag-

netic reconnection process, as discussed by Jovanovi�c and

Shukla.63–65 Presenting a drift-kinetic model for the electron

dynamics, which is, specifically for the lower hybrid regime,

coupled with the linear dynamics of unmagnetized ions, and

solving the former again by taking into account distributions

of type (2), they were able to derive and solve numerically

two nonlinearly coupled equations, for the scalar and the

vector potential. With this they could show that nonlinear

currents and charges can efficiently mediate the topological

transformations of magnetic field lines, yielding a chain of

magnetic islands coupled with a double chain of hydrody-

namic vortices.12 We shall come back in Sec. VI B to the

magnetic reconnection problem again.

To summarize, holes of higher dimension in magnetized

plasmas definitely would provide a better approach to realistic

plasmas than the 1D holes, which are strictly appropriate for

unmagnetized or strongly magnetized plasmas only. Since,

however, the available analytical description of them is less

rigorous and since their description is based on the same fun-

dament (quasi-potential method with distributions of the kind

(2)), it seems at least not implausible to transfer the results

obtained with the 1D modes to the more general 2D, 3D mag-

netized case, notably their intrinsically nonlinear nature, their

stability and easy excitation potential, the latter not requiring

anymore a linear instability mechanism. This admittedly

somewhat lax handling is the more justified the stronger the

magnetic field and the noisier the background plasma are,

which supports nonlinear hole excitation. Another support

stems from the fact that hole stability is increased whenever

one of the three properties prevails, namely small amplitude,

finite propagation velocity, and enhanced particle trapping, all

within the limitations set by the equilibrium theory.

C. Evidence in other physical systems

We find it worth to at least mention the occurrence and

identification of essentially 1D hole solutions in other physi-

cal systems, as well.

Firstly, CEHs have been identified in laser-plasma inter-

action experiments, predominantly periodic holes of essen-

tially SEAW type (k0 6¼ 0; B ¼ 0) in Ref. 66 and SEHs

(k0 ¼ 0; B > 0Þ in Ref. 67.

Secondly, signatures of cnoidal hole solutions of the

type (k0 6¼ 0; B > 0), especially of the upper branch, have
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been seen in fullerene pair plasmas68,69 and of the type

(k0 6¼ 0; B ¼ 0) in dusty plasmas,70 noting that in both cases

a NDR similar to Eq. (7) for the corresponding mode71

applies.

In the pair plasma experiment of Ref. 69, to be more

explicit, longitudinal electrostatic modes along B-field lines

in a dust-and electron-free fullerene (hydrogen) pair ion

plasma could be generated by a cylindrical exciter with the

following properties: the structure is periodic with a well-

defined frequency-wave number relationship, i.e., it is char-

acterized by a nonlinear dispersion relation x ¼ xðk; wÞ, as

shown in Fig. 2 of Ref. 69, three regions of x can be distin-

guished, namely (i) a low frequency, acoustic region (mis-

takenly identified by the authors as linear ion acoustic

waves, despite the general knowledge that the latter cannot

exist in such a plasma), (ii) an intermediate frequency wave

region (IFW) in which, after a turn over, the frequency

increases with decreasing k, and (iii) a high frequency

region, which extends to large x exhibiting a wave number

cutoff at small k.

A qualitative explanation of all of these properties can

be given in a natural way-without entreating the presence of

additional linear effects-by cnoidal nonlinear modes that

exist due to ion trapping, as explored in Ref. 72 and shown

in Fig. 3 of that paper.

And thirdly, holes (and humps) on coasting (and

bunched) beams are a common, well-known structural phe-

nomenon in circular accelerators and storage rings, where

again trapped particle equilibria of the VP system can be

made responsible for Refs. 73–76. The “mystery” of a hump

seen recently on one of the beams in LHC in CERN (Ref. 77)

may find an explanation within our theory, the reason for this

self-generated structure being probably a misregulated power

supply in the RF system (by courtesy of Frank Zimmermann).

These are in short some references dealing with CEHs

in general.

In the last section we dwell on recently published works

in some more detail, because of their benchmarking charac-

ter, as we believe. We will provide in (A) a deeper view at a

recent experiment, give in (B) evidence of SEH and CEHWL

observations in space and simulations especially in the

Earth’s magnetic tail region, and comment in (C) on the

concept of the group velocity in the presence of particle

trapping. Finally, in (D) we will make an excursion into

hydrodynamics and show that the trapping of fluid elements

gives rise to a similar trapping scenario.

VI. A FIRST APPLICATION

This last section is hence devoted, as a first application,

to an updated interpretation of some recent observations of

phase space holes, based on the present achievements.

A. Holes in a laboratory experiment

In Ref. 18 the exitation of SEHs has been reported, initi-

ated by a fast rising positive voltage pulse applied to a metal-

lic disk electrode that has been immersed in a low pressure

argon plasma. When the pulse width sp was below 3f�1
i ,

where fi is the ion plasma frequency, a virtual source in front

of the electrode could be seen from which solitary potential

humps started to propagate in two opposite directions: a left

one, propagating towards the electrode with a speed of

approximately v0l ¼ 0:4 and a right one propagating with

approximately v0r ¼ 1:3, respectively. The virtual source

region was initially identical with a localized ion rich region

corresponding to a positive potential hump region.

The emanation of the two SEHs can then be qualita-

tively understood as follows.

Initially the spontaneously generated ion rich region is

not adapted to a standing SEH and hence cannot persist in

time. Instead, an evolution starts in which the potential hump

is split into two counterpropagating SEHs subject to the laws

of energy and momentum conservation for the global system.

This splitting scenario is well known from evolution equa-

tions of Boussinesq-type (i.e., from equations extended to

second order and formulated in lab frame) and applies to the

one with a trapping nonlinearity as well,45 the latter being

characteristic for SEHs,9 as mentioned. These self-

consistently generated SEHs satisfy the NDR (7) with k0 ¼ 0

and are prescribed by Bl ¼ 0:83 and Br ¼ 0:01, respectively.

The corresponding trapping parameters, assuming

w ¼ 1=100, are found to be bl ¼ �14 and br ¼ �1, respec-

tively. We obviously have met here two typical members of

SEHs. Note that an increase of the amplitude reduces the

size of the trapping parameter but not its sign.37

We mention in parenthesis that in this experiment also a

negative potential region (a well) was seen near the biased

electrode. Assuming that all structures are mainly caused by

the dynamics of electrons, one is tempted to associate this

negative potential region with our solitary potential dip solu-

tion. This, however, requires that the life time of the struc-

ture is sufficiently long and that a beam-type trapped particle

distribution prevails self-consistently, properties that have

still to be confirmed experimentally.

When the pulse width was prolonged to sp > 3f�1
i no

virtual source was seen anymore. Instead the propagation of

a single potential hump away from the exciter with approxi-

mately v0 ¼ 1:3 could be seen for a while. But suddenly a

slowing down to v0 ¼ 0:4 occurred. This slower structure,

however, must be of different origin, as no transition can be

imagined that is valid within the collisionless theory. Instead,

weak collisions supplemented by ion mobility and a pump

DC electric field could possibly provide the conditions for a

new dissipative structural EH state, as proposed in Refs. 11,

21, and 78. Our solutions, therefore, seem to provide the

appropriate theoretical background for this experiment.

B. Holes at a reconnection side of Earth’s magnetotail

It has become evident in the last decades that EHs

belong to the most ubiquitous structures found in space, gen-

erated by large-scale parallel currents or electron beams in

auroral plasmas,79,80 in magnetopause81 and in the Earth’s

magnetotail.82,83 With respect to the latter, an important

issue is as to whether EHs in the vicinity of a reconnection

side in the Earth’s magnetotail can shed more light on the

small-scale electron dynamics and possibly on the dissipa-

tion mechanism accounting for collisionless magnetic
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reconnection. Accumulated by several teams,17,82–87 the

observational facts can be summarized, as follows:

(i) small amplitude bipolar, tripolar, and multipolar spikes

in the parallel electric field Ek can be identified simulta-

neously, which appear

(i) near the outer edge of the plasma sheet within a cavity

and occur

(iii) during intervals of narrow electron beams or counter-

streaming beams, for which at best and speculatively

the Buneman instability has been made responsible. Of-

ten, if not mostly, however, they are found in the Bune-

man stable, i.e., linearly stable, regime.

Before becoming more concrete let us first report in

more detail the experimental facts.

In Ref. 84 solitary holes and hole wavelets associated

with magnetic reconnection have been observed by Cluster

and Geotail in the diffusion region at dayside magnetopause

and in the magnetotail region providing evidence that EHs

may play a role in magnetic reconnection. In Fig. 1 of their

paper, which refers to Geotail measurements at the dayside

magnetopause, three types of electrostatic wave patterns in

the Broadband Electrostatic Noise (BEN) have been seen,

denoted by A, B, and C. Whereas A refers to a SEH (bipolar

spike in Ek), B and C have the characteristics of two and

more humps in / (tripolar and multipolar spikes), showing

close similarity with structures found in particle simulations

of the electron beam instability in which phase space vortices

confirm their microscopic nature. A further structure D with

even more equidistant humps in / (AMEW standing for

Amplitude Modulated Electrostatic Waves) could be seen as

well, but a proof from simulations that these are due to parti-

cle trapping is missing.

From the theoretical point of view, as a first conclusion,

it is not difficult to see that our CEHWLs, possibly extended

by trapped ion effects, provide an explanation of the A, B, C,

and AMEW structures, and that it is the task of numerical/

experimental investigations to confirm (or disprove) the su-

premacy of the trapping nonlinearity for the latter.

Similarly, observations of Geotail (Fig. 3 of Ref. 84) in

the magnetotail region revealed bi- and tripolar spikes in Ek
both near the neutral sheet and around the plasma sheet

boundary. The Cluster measurements during several plasma

sheet encounters near the X-line region captured monopolar

(DL), bipolar and tripolar pulses, seen when an intense

narrow electron beam or narrow counter-streaming beams

occurred. They are hence accompanied by enhanced fluxes

of high-energy electrons flowing along the ambient magnetic

field. Comparisons with PIC simulations88 indicate that a

Buneman instability (v0 / ðme=miÞ1=3vDe) may be at work

although the predicted hole speed of about 900–3500 km/s

was typically higher than the observed one of 700–2500 km/s.

In other words, the measured current density was roughly

speaking a quarter lower than that required for a Buneman

instability scenario. There were obviously events in which the

Buneman instability was not active. In contrast to Ref. 88,

who needed a guide magnetic field, EHs could be detected

with and without a guide magnetic field.

A similar observation has been made earlier in Ref. 82

with Geotail, where the observed localized structures were

found to be of three types: bipolar (type A), tripolar (type B)

and multipolar (type C), as seen in their Fig. 4, the whole

scenario including trapping being supported again by PIC

simulations (Fig. 5).

Cluster observations of SEHs in association with magne-

totail reconnection and comparison with simulations have

been provided in Ref. 83, too. The hole structures were seen

near the outer edge of the plasma sheet within a density

cavity and occurred during intervals of narrow electron

beams. In the numerical simulations these localized struc-

tures developed only relatively late after the beams driven by

reconnection became strong. “They evolve from periodic

fluctuations and grow to large amplitude with the largest-

amplitude fluctuations coalescing into localized structures.”

The holes in this 2D simulation have a velocity of 0.2 of the

electron streaming velocity, being roughly consistent with

the Buneman instability. However, the predicted velocities

were again higher than the observed ones, such that an under

critical excitation cannot be excluded.

We also mention that bi- and tripolar pulses of Ek have

been seen by the four Cluster space craft in the auroral

zone85 and by Polar and Cluster in and near the Earth’s

magnetosphere, magnetopause, and bowshock.86 Another

Polar observation of both structures in the high altitude polar

magnetosphere has been reported in Ref. 87.

And last but not least the recent in situ observations of

slow EHs at a reconnection site in the Earth’s magnetotail in

Ref. 17 substantiate this picture further. The four Cluster

spacecraft measurements of EHs revealed the following

properties:

(1) they are weak (w 
 0:02� 0:07) and their speed is close

to the ion thermal or sound velocity, i.e., v0 � Oð
ffiffiffi
d
p
Þ,

(2) they typically appear simultaneously in the form of

solitary holes and hole wavelets (Fig. 2 of Ref. 17), and

(3) the measured current density is an order of magnitude

lower than the one required for a linear two-stream

instability, such as for the ion acoustic or the Buneman

instability (third page of Ref. 17).

With reference to Ref. 17, intense localized short-lived

currents, which are produced by the coalescence of two

magnetic islands and have the expected direction, namely

opposite to the down-to-dusk propagation direction of EHs,

are responsible for EH generation. Whether, however, the

Buneman instability or some other current driven excitation

mechanism can be made responsible, remained undecided.

“This (the Buneman instability) cannot be reliably verified

from the data.” Also, the presence of such high drifts in the

electron measurements could not been verified, because data

were not available.

We conclude that the excitation mechanism is at least an

open question and offer in the following an alternative,

which requires lower drifts and has thus less problems with

item 3). We will show now that the properties (1–3) can be

straightforwardly understood by the present theory when it is

extended by mobile ion effects and when use is made of the

zero energy concept.
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As mentioned at the end of Sec. II, the present theory in

case of a current-carrying plasma can be extended to low

hole velocities as low as ion acoustic velocities with

v0 � Oð
ffiffiffi
d
p
Þ. One simply has to add in Eq. (7) an ionic

shielding term and replace v0 by vD � v0, while ion trapping

effects will still be ignored. With this extension the energy

difference Dw between the energy of the actual plasma,

excited for simplicity by a single SEH only, and the energy

of the unperturbed plasma was found in Ref. 32 to be

Dw ¼ w
2

1þ 1

2
Z0r u0=

ffiffiffi
2
p� �

1� u2
0

	 
� �
; (23)

where u0 ¼ v0

ffiffiffiffiffiffiffiffi
h=d

p
. Expression (23) is zero at u0 ¼ 2:12

and is negative (positive) for u0 > 2:12 (u0 < 2:12). Apply-

ing energy conservation during the growth of the structure,

Dw ¼ 0, we then expect that zero-energy holes with

u0 ¼ 2:12 are preferentially generated, in agreement with the

observation. The reason is that in the absence of collisions

the plasma resides in its total energy status transferring

merely kinetic electron energy to potential energy during the

establishment of the structure. The corresponding drift veloc-

ity vD, noting that with u0 also v0 is already determined, is

given by the NDR, which reads for SEHs and negligible ion

trapping effects

�1

2
Z0rððvD� v0Þ=

ffiffiffi
2
p
Þ� h

2
Z0rðu0=

ffiffiffi
2
p
Þ ¼ 16

15
bðb; vD� v0Þ

ffiffiffiffi
w

p
:

(24)

In the Earth’s magnetotail, where h ¼ 1, and for zero-energy

SEHs, where u0 ¼ 2:12 and hence v0 ¼ u0

ffiffiffi
d
p

 0, it simpli-

fies to

� 1

2
Z0rðvD=

ffiffiffi
2
p
Þ � 0:285 ¼ 16

15
bðb; vDÞ

ffiffiffiffi
w

p
¼: ~B; (25)

which has to be satisfied by vD for a given ~B. We add that the

corresponding threshold for the Buneman instability would

be vc 
 1:3.

For the remainder we show that there is no problem to

find trapping conditions under which vD can be appreciably

below that value, e.g., one quarter below 1.3 or even a mag-

nitude lower than 1.3.

This can be directly seen from Fig. 2 of Ref. 32, which

displays Eq. (25) in the ðh; vDÞ plane for several values of ~B
together with the critical drift velocity vc for linear instabil-

ity. We observe that ~B ¼ 0:01 ( ~B ¼ 0:7, respectively) yields

vD ¼ 1 (vD ¼ 0:13, respectively), which proves our claim.

For ~B ¼ 0:01 it holds ð�bÞ
ffiffiffiffi
w

p
¼ 0:0274, which can be

solved, e.g., by the pair (b ¼ �0:685;w ¼ 1=625), yielding a

specific trapping condition for a given amplitude. For larger

values of w the trapping parameter becomes less negative,

e.g., (b ¼ �0:274;w ¼ 0:01) or (b ¼ �0:193;w ¼ 0:02).

This implies, keeping the robust parameters ~B, vD, or v0 con-

stant, that a gradual filling up of the trapped particle region,

e.g., by processes such as scattering or phase space diffusion,

is accompanied by an increase of the wave amplitude. This

explains, besides the nonlinear trigger of a seed SEH, the

underlying process of nonlinear growth, at least partially.

To complete the picture, we note that a ~B ¼ 0:7 implies

ð0:983� bÞ
ffiffiffiffi
w

p
¼ 1:173, which yields b ¼ �28:3 for

w ¼ 1=625. A deep excavation of the distribution in the reso-

nant trapped particle region is thus in accord with drift veloc-

ities well below the critical linear drift velocity. (We point

out in parentheses that long living excavations of this depth

have been seen on debunched particle beams at Fermi lab in

the mid 1990s89 (see also Refs. 73 and 90 and references

therein for more details).) Moreover, it is worth mentioning

that the inclusion of ion trapping strengthens this picture, as

it reduces the drift velocity further.33

The trapping nonlinearity, therefore, provides a natural

explanation of the observed low speed structures in the

Earth’s magnetotail region with no need for invoking a linear

instability for their excitation.

We may, therefore, state that these observations are con-

sistent with the theoretically predicted nonlinear destabiliza-

tion mechanism in linearly undercritical plasmas, as seen by

the formation of CEHs.

We add that this, of course, does not answer the question

whether SEHs do play an active role in the fast collisionless

magnetic reconnection process. Indeed, recent 3D simula-

tions91 indicate that reconnection can take place without

them, being mediated by anomalous viscosity, which is due

to a filamentary instability, rather than by anomalous resis-

tivity. To be excited, this instability requires a guide mag-

netic field of about 1/2 of the reconnecting magnetic field.

However, as long as these simulations cannot reproduce the

experimental facts, namely the SEH generation and espe-

cially their excitation also at low guide fields, it appears not

implausible to assume that the last word about the role of

electron holes in the magnetic reconnection process has not

been spoken yet.

C. Group velocity of hole wavelets

In the preceding experiment, assuming that our interpre-

tation applies, the velocity of the wavelet as a whole essen-

tially coincides with the common phase velocity of each

potential hump, such that no distinction can be made

between the velocity of an individual hump and that of the

group. This is in strong contrast with the usual group veloc-

ity concept, introduced by Rayleigh (see Refs. 92 and 93,

and references therein), in which the group velocity,

obtained by modulation of a train of a linear carrier wave, is

given by vg ¼ @x=@k. The approach of calculating the wave-

let velocity by @x0=@k0 and using the NDR x0ðk0; BÞ, as

depicted in Fig. 5, would, however, not make any sense and

would fail.

The lack of an underlying linear carrier wave, therefore,

questions all attempts to relate the wavelet velocity with

Rayleigh’s expression or more sophisticated elaborations,

e.g., via variational approaches (see, e.g., Refs. 94–96) or via

incorporation of nonlinear counterparts of linear elements,

such as Landau damping, as has been proposed, e.g., by

Refs. 19 and 20.

It is, therefore, by no means surprising when authors in

Refs. 19 and 20 find strong deviations of the group velocity

as a result of particle trapping and conclude “that the group
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velocity of an essentially undamped wave, calculated by

using the very definition of Rayleigh, is found to signifi-

cantly differ from @x=@k “or” that, surprisingly enough, the

main nonlinear change in vg occurs once the wave is effec-

tively undamped!”

Phase space vortices or holes are intrinsically nonlinear

and since no linear wave can be associated with the usual

group velocity concept, the latter and elaborated extensions

have no foundation anymore.

In fact, this failure of the group velocity concept could

be added in Sec. III as a further “proof” of the intrinsic nonli-

nearity of cnoidal hole structures.

D. Vortex defect equilibria in hydrodynamic shear
flows

As a last application we make use of the well-known

mathematical analogy between VP plasmas and incompressi-

ble, 2D shear flows in hydrodynamics, Refs. 11, 97, 98, and

references therein. In conformity with the electron hole solu-

tions, formulated in phase space, we are going to construct

explicitly self-consistent equilibria of vortex defects in ideal

plane Couette, formulated in the 2D real space. The expecta-

tion is that, when subject to real physics, i.e., by inclusion of

viscosity effects, etc., this will provide a better starting point

for finding analytically critical Reynolds numbers Rec for the

onset of turbulence than the use of the linear shear flow pro-

file. This is of interest since Rec is infinity for the latter, such

that the flow should be stable against infinitesimal perturba-

tions for all Reynolds numbers in contradiction to the obser-

vational facts.99

To describe the ideal incompressible Couette flow in 2D

we represent the flow velocity u(x, y, t) by the stream func-

tion H(x, y, t) through

u ¼ rH� bz; (26)

which satisfies r 	 u ¼ 0. Taking the z-component of the

curl of the Euler equation, ð@t þ u 	 rÞu ¼ � 1
. $p, we get

for the vorticity field,

f ðx; y; tÞ :¼ ðr � uÞ 	 bz ¼ �r2H; (27)

the evolution equation,

@tf þ ½f ;H� ¼ 0; (28)

where ½	; 	� stands for the Poisson bracket in the two canoni-

cal variables (x, y). (Note that in case of a finite viscosity �
the term �r2f must be added on the rhs of (28).)

Equation (28), being also called convective cell equation

in connection with Eq. (27), is a Liouville-type equation and

expresses the Hamiltonian nature of the flow dynamics, as

the Vlasov equation does for the plasma dynamics.

Steady state solutions, satisfying [f, H]¼ 0, are found by

expressing f in terms of H, f(H). The linear shear velocity

profile is then represented by f0 ¼ �1 and H0 ¼ y2=2, yield-

ing u0 ¼ ybx. To get a vortex defect equilibrium embedded in

a constant shear flow profile we set f ¼ �1þ df and

H ¼ y2=2þ dH ¼: e, in which case a solution is given by

df ¼ df ðeÞ. As in the Vlasov case e can admit both signs

with e ¼ 0 representing the contour in the (x, y)-plane, which

separates the laminar free flow from the one with self-

trapped fluid elements, called the separatrix. In constructing

df a lot of freedom is available.

A simple case is given by assuming df ¼ hð�eÞð�b̂eÞ
with a constant b̂ valid for e < 0 and by setting df ¼ 0 for

e > 0, which means that the free flow remains unperturbed.

We note that due to the perturbation there is now a region in

which fluid elements will be trapped, the so-called trapped

region e < 0.

To satisfy self-consistency, f ¼ �r2H, in this region

we set dH ¼ �ðy2=2þ ÛÞ and get

r2Û� b̂Ûþ 1 ¼ 0; (29)

valid for Û ¼ �e > 0.

Equation (29) can be simplified by the Ansatz

Û ¼ 1=b̂þ uðfÞ with f :¼ x2 þ y2, which yields

fu00ðfÞ þ u0ðfÞ � b̂
4

u ¼ 0: (30)

The solution of Eq. (30) can be found by a series expansion

and is given by

uðfÞ ¼ a0

X1
n¼0

1

ðn!Þ2
b̂f
4

 !n

; (31)

which is a quickly decaying series. An inspection shows that

the streamlines H ¼ �Û ¼ �1=b̂� uðfÞ ¼ const are con-

centric circles around the origin, f ¼ 0, and that at the origin

Ûð0Þ ¼ 1=b̂þ a0 holds. A positive Û thus requires

a0 > �1=b̂ and the possibility of a zero of ÛðfÞ; Ûðf0Þ ¼ 0,

asks for a negative b̂, in which case Eq. (31) is an alternating,

quickly converging series. The strength of the perturbation is

controlled by the parameter Ŵ :¼ a0 þ 1=b̂ > 0, which can

be considered as the amplitude of the perturbation. In terms

of Ŵ the zero of ÛðfÞ is in first approximation obtained for

f01 ¼ �4Ŵ
a0b̂

> 0. The corresponding radius of the perturbed

region r01 ¼
ffiffiffiffiffiffi
f01

p
thus shrinks with decreasing amplitude.

For the explicit case of b̂ ¼ �4, and a0 ¼ 5=4 we obtain

ÛðfÞ ¼ 1� 5
4
fð1� f=4þ f2=36� f3=576þ :::Þ, which has

a zero around f0 
 1 (f01 ¼ 0:8; f02 ¼ 1:11; :::Þ. The admis-

sible region, where the laminar flow is perturbed by a vortex

defect, is hence given by x2 þ y2 � f0 
 1. The perturbed

vorticity in this region is given by df ¼ �b̂e < 0, i.e., the

total vorticity becomes f ¼ �1� b̂e and is enhanced magni-

tudewise. We mention that at the separatrix, e ¼ 0, the flow

is discontinuous, which is in accordance with the zero

viscosity assumption.

The local enhancement of the vorticity, therefore,

provides a new, secondary equilibrium state, in which fluid

elements are trapped, similar to the electron trapping

scenario in plasma physics. This new equilibrium with an

embedded vorticity perturbation is supposed to be unstable

against perturbations (linearly and/or nonlinearly). For small

amplitudes it can also serve as a tiny seed, which grows in
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space-time and spreads over the whole flow. Forthcoming

investigations are expected to shed more light on these dy-

namical processes that result in turbulence. This would

explain why an inviscid plane Couette flow is turbulent

rather than laminar.

At finite Reynolds numbers the use of the Navier-Stokes

equation with a finite viscosity term for finding the corre-

sponding secondary equilibrium with localized trapped fluid

elements (provided that it exists) would be a straightforward,

but mathematically more delicate challenge. For high Re this

could perhaps be achieved by a boundary layer theory around

the separatrix. Also, 3D secondary equilibria will probably be

more successful to better approach the spatial-temporal

“puff” like states, which are expected to be the origin of

destabilization in analogy to the pipe flow problem (see next

section). In any case, it could be an interesting task to

approach the onset of turbulence analytically, i.e., to find the

critical Reynolds number Rec for more realistic situations.

For the cylindrical pipe flow problem, the dynamics and

turbulence are of similar nature. Again, the pressure driven

flow should be stable for all Reynolds numbers according to

linear theory for the simple first order parabolic flow.99 A

secondary equilibrium with a localized vortex defect could

again be an escape from this dilemma and provide an under-

standing of the onset of turbulence theoretically.

From an experimental point of view, the conditions for

the onset of turbulence in a long pipe flow have recently

been clarified by series of experiments, performed by Hof

and collaborators100–104 (see also Eckhardt105). These

authors observed that for Reynolds numbers below about

2300 the turbulence remains localized in short “puffs” that

move downstream without any change in form, having a fi-

nite lifetime that increases with Re. On the other hand, Nishi

et al.106 could show by numerical simulations that puffs

can split, the splitting time being decreasing with Re, as

confirmed also by the experiments. “In particular, if a puff

manages to split before it decays, the sibling may carry

on the turbulence, spatial and temporal couplings become

important and there may always be some turbulence some-

where along the pipe.”105 Equating the lifetime of a single

puff, created by injection of a localized water jet into

the flow, and the time of splitting, Hof and collaborators

determined Rec¼ 2040 as the critical Reynolds number for

the pipe flow problem. The coherent structures thus provide

a scaffold that supports turbulent dynamics by creating a

multitude of connections between these states.105 Turbulence

is thus found to be triggered by localized patches, which are

transient and spatially coupled, placing the pipe flow dynam-

ics in the larger theoretical framework of spatial-temporal

intermittency.107

VII. CONCLUSIONS AND OUTLOOK

The subject of the present review has been the trapping

nonlinearity as evident in persistent, 1D, weak, electrostatic

structures of cnoidal electron hole type. The latter propagate

at bulk velocity in a thermal, collisionless plasma, i.e., in a

region where standard linear wave theory predicts non-

existence due to strong Landau damping. The ubiquitous

evidence of these structures in laboratory, space and numeri-

cal experiments, however, provides a different picture and

indicates that something must be wrong with wave theories

that rely on a linearization of the governing equations in the

small amplitude limit.

In the present review, we have collected arguments

which prove that such standard wave theories cannot claim

general validity and must be given up in favor of an updated

wave theory in which nonlinearity prevails from the outset,

no matter how small the amplitude is. It is the velocity

region at phase velocity—the resonant or trapped particle

region—for which special care must be taken not to miss the

present electron hole structures. The latter automatically

come to light if self-consistent Vlasov distribution functions,

rather than linearized Vlasov distribution functions, are

involved that are sufficiently smooth near phase velocity as,

for instance, coarse-grained distributions.

We argued that the function space of the VP solutions and

that of the lVP solutions are two different worlds that cannot

be bridged, a fact being independent of the wave amplitude.

Here, we concentrated on the simplest possible descrip-

tion of trapped particle modes, the cnoidal electron holes

propagating in a neutralizing immobile ion background, and

analyzed their properties in some detail. As mentioned, the

neglect of ion dynamics and especially of ion trapping

effects is admissible only for not too slow phase velocities,

i.e., the EHs have to exceed the ion sound speed

v0 >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
. Otherwise ionic effects come into play,

which increase the variety of trapped particle modes, such as

treated in Refs. 9–12, 37, 108, etc. A direct application of

this generalization has been made for the magnetic reconnec-

tion process in the Earth’s magnetotail.

The birth of these structures demands a driving mecha-

nism, which can be a current, as mentioned, but also wave

launching, beam injection, or inhomogeneities can be the

cause. The easiest and often met wave excitation mechanism

is a linear two-stream instability in which holes are generated

out of thermal noise to become nonlinear states, saturated by

particle trapping. This process, however, is not restricted to

an ideal collisionless plasma but can take place in a weakly

collisional plasma, as well. As seen numerically in Refs. 78

and 11 for a linearly two-stream unstable plasma, electron

hole structures (generally of finite amplitude and with a b
nearly zero) can emerge out of seed fluctuations in a noisy

plasma and resist collisions, provided that ions are treated

mobile and a DC electric field is present. The result is a

driven, structurally excited, dissipative equilibrium state far

away from the thermodynamic one. In such an excited, struc-

turally embossed plasma, the transport properties are no lon-

ger determined by classical transport coefficients as have

been derived by Ref. 109 for a Maxwellian plasma, but have

now to be rederived from distributions of the kind (2).

Moreover, for a collisionless, current-carrying plasma,

numerical simulations revealed that holes can be excited

nonlinearly even in situations of a linear two-stream

stability,11,30–35 as mentioned and as applied for the mag-

netic reconnection process in the present paper. There is,

hence, no chance to understand the numerical findings on the

basis of linearized wave theories.
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In other words, the presence of electron holes and their

interpretation open a door into a new world of anomalous

plasma processes.

As discussed also, this knowledge about trapping can

directly be transferred to the solenoidal fluid dynamics of a

2D, incompressible shear flow, as met in the plane Couette

flow, in the cylindrical pipe flow, in geostrophic fluids,110,111

etc., where the convective cell equation as the underlying

evolution equation for the vorticity bears the same Hamilto-

nian structure. A secondary flow equilibrium with a localized

region of trapped fluid elements offers a new way for a theo-

retical understanding of the onset of turbulence.

Furthermore, strongly magnetized plasmas, being ruled

by evolution equations of similar type, such as the

Hasegawa-Mima equation112 or the Hasegawa-Wakatani

equation,113 expose the same type of nonlinearity, the latter

resulting from the perpendicular, ExB driven ion (plasma)

dynamics coupled with the parallel electron dynamics. In

this case the trapping effect can enter even twice, hence mak-

ing any linear wave approach as a meaningful description

obsolete (see also Refs. 11, 12, 14, 114 for more details).

We finish by mentioning that this generalized view of

the intrinsic nonlinearity in plasma and fluid dynamics, the

moment trapping is involved, receives further support by a

numerical simulation of Drake et al.115 Solving the 3D colli-

sional drift-wave turbulence in a sheared magnetic field these

authors found that the dynamics is self-sustained by the exci-

tation of nonlinear structures even in situations where all lin-

ear modes are damped. The trapping scenario, explored in

some detail for electrostatic waves in the present paper,

therefore, gives a hint for a deeper understanding of the com-

plex plasma and fluid dynamics and may thus contribute to

the resolution of a longstanding mystery in the dynamical

evolution processes.

And finally, the overwhelming body of evidence of hole

observations, especially in linearly stable regions, suggests

that the theoretical treatment of plasma (and fluid) dynamics

should be released from the “Prokrustes bed” of linear wave

theory. Except for the initial state of a linear instability and

the relatively rare events of quiet plasmas, subject initially to

sufficiently small, analytic perturbations, for which linear

Landau theory and a linear dispersion relation do apply, an

electrostatically driven plasma evolves as a rule nonlinearly

and is governed even in the small wave amplitude limit by

the trapping nonlinearity, the propagation of cnoidal electron

holes being merely an example.
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