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A current plasma expansion model reveals an electron equation of state in
which electrons are confined by the electrostatic potential Φ(x) for which we
assume for the moment −Ψ ≤ Φ ≤ 0 with a finite Ψ > 0. As shown e.g. in
Schamel’s 2000 paper and in the literature cited therein (H.Schamel, Phys.
Plasmas 7 4831 (2000)) the appropriate density expression in case of a neg-
ative potential becomes for isothermal electrons in a thermal plasma (β = 1)

ne(Φ) = A′(I(Φ + Ψ) + eΦ+Ψerf(
√

Φ + Ψ)) ≡ A′eΦ+Ψ, (1)

where I(x) is defined by I(x) = ex(1 − erf
√
x) and A′ is a constant. The

first part in (1) represents the free, the second part the trapped electrons.
The factor A′ is determined by the requirement ne(0) = 1 and becomes

A′ = 1
I(Ψ)+eΨerf(

√
Ψ)
≡ e−Ψ, (2)

Of course, a much simpler expression would be ne(Φ) = eΦ, but by writing
ne this way one can easily extend it to β < 1 and discuss furthermore the
relationship between free and trapped electrons.
From (1) with (2) or from the Botzmann law it is easily seen that the
density at potential minimum −Ψ tends to zero as Ψ→∞ as it should for
an expansion into a vacuum. Moreover, the first part in (1) vanishes in this
limit for any Φ since erf(

√
Φ + Ψ) → 1 for Ψ → ∞. The whole density is

hence given by that of the trapped particles namely by the second term.
If we now allow for 0 < β ≤ 1, the difference will be that the second term in
(1) is replaced by 1√

β
eβ(Φ+Ψ)erf

√
β(Φ + Ψ) and accordingly in (2). From

which follows immediately that in the infinite Ψ limit, when the first term
again vanishes, the electron density generally becomes
ne(Φ;β) = eβΦ (3)
being again composed only of trapped electrons.
But this implies that if we take the actual electron temperature, given by
that of the trapped electrons, Tet =

Tef
β , and change the normalization of Φ

by using Tet instead of Tef we return to the old isothermal equation of state.
Schamel’s trapping model in a correct representation hence does not give
rise to a new situation as long as free electrons are missing corresponding
to an infinite potential depth ansatz.
In this situation the electron front, i.e. the location where the electrons are
adapted to the vacuum, is at infinity at any instant. On the other hand,
to have an electron front xef at finite space this would require a singular
potential, Ψ→∞, at xef beyond which there would be an exact vacuum. A
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removal of this nonphysical aspect, however, means that the assumption of
inertialess electrons has to be given up in favor of a time-dependent electron
dynamics to be described in phase space.
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